找回密码
 注册
查看: 736|回复: 0

R语言 HTqPCR包 limmaCtData()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-25 21:48:41 | 显示全部楼层 |阅读模式
limmaCtData(HTqPCR)
limmaCtData()所属R语言包:HTqPCR

                                        Differentially expressed features with qPCR: limma
                                         差异表达的功能与定量PCR:limma

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Function for detecting differentially expressed genes from high-throughput qPCR Ct values, based on the framework from the limma package. Multiple comparisons can be performed, and across more than two groups of samples.
高通量定量PCR的Ct值的基础上,从limma包的框架,用于检测差异表达基因的功能。多重比较,可以执行,并在两个以上的群体样本。


用法----------Usage----------


limmaCtData(q, design = NULL, contrasts, sort = TRUE, stringent = TRUE, ndups = 1, spacing = NULL, dupcor, ...)



参数----------Arguments----------

参数:q
object of class qPCRset.
对象类qPCRset。


参数:design
matrix, design of the experiment rows corresponding to cards and columns to coefficients to be estimated. See details.
矩阵,设计相应的实验行卡和列的估计系数。查看详情。


参数:contrasts
matrix,  with columns containing contrasts. See details
矩阵,包含对比列。查看详情


参数:sort
boolean, should the output be sorted by adjusted p-values.
布尔,应当按调整后的P-值进行排序输出。


参数:stringent
boolean, for flagging results as "Undetermined". See details.
布尔,标记为“未决定用途”的结果。查看详情。


参数:ndups
integer, the number of times each feature is present on the card.
整数的次数,每个功能是存在卡上。


参数:spacing
integer, the spacing between duplicate spots, spacing=1 for consecutive spots
整数,间距连续点之间的重复点,间距= 1


参数:dupcor
list, the output from duplicateCorrelation. See details.
列表中,从duplicateCorrelation输出。查看详情。


参数:...
any other arguments are passed to lmFit, contrasts.fit,  eBayes or decideTests.
任何其他的参数被传递到lmFit,contrasts.fit,eBayes或decideTests。


Details

详情----------Details----------

This function is a wrapper for the functions lmFit, contrasts.fit (if a contrast matrix is supplied) and eBayes from the limma package. See the help pages for these functions for more information about setting up the design and contrast matrices.
这个函数是一个包装的功能lmFit,contrasts.fit(如果提供一个对比矩阵)和eBayes从limma包。关于设立设计和对比度矩阵的更多信息这些功能的帮助页面。

All results are assigned to a category, either "OK" or "Unreliable" depending on the input Ct values. If stringent=TRUE any unreliable or undetermined measurements among technical and biological replicates will result in the final result being "Undetermined". For stringent=FALSE the result will be "OK" unless at least half of the Ct values for a given gene are unreliable/undetermined.
所有的结果都分配到一个类别,可以根据输入的Ct值“OK”或“不可靠”。如果stringent=TRUE之间的技术和生物复制任何不可靠的或未定测量,将导致最终的结果是“未决定用途”。 stringent=FALSE结果将是“确定”,除非至少有一半的一个特定基因的Ct值是不可靠/未定。

Note that when there are replicated features in the samples, each feature is assumed to be present the same number of times, and with regular spacing between replicates. Reordering the sample by featureNames and setting spacing=1 is recommendable.
请注意,当有复制的样本中的功能,每个功能被假定存在相同的次数,并定期间距之间的复制。 featureNames设置spacing=1是可取的,重新排序样品。

If technical sample replicates are available, dupcor can be used. It is a list containing the estimated correlation between replicates. limmaCtData will then take this correlation into account when fitting a model for each gene. It can be calculate using the function duplicateCorrelation. Technical replicates and duplicated spots can't be assessed at the same time though, so if dupcor is used, ndups should be 1.
如果技术样本复制,dupcor可以使用。这是一个列表,其中包含估计的相关性之间的复制。 limmaCtData然后考虑拟合模型为每个基因相关。它可以计算出使用的功能duplicateCorrelation。技术复制和重复点不能在同一时间虽然进行评估,所以如果dupcor使用ndups应该是1。


值----------Value----------

A list of data.frames, one for each column in design, or for each comparison in contrasts if this matrix is supplied. Each component of the list contains the result of the given comparisons, with one row per gene and has the columns:
一个的data.frames名单,每列在design,或为每个比较contrasts如果这个矩阵提供。列表中的每个组件都包含在给定的比较结果,每一个基因的行的列:


参数:genes
Feature IDs.
功能ID。


参数:feature.pos
The unique feature IDs from featurePos of the q object. Useful if replicates are not collapsed, in which case there might be several features with identical names.
featurePosq对象独特的功能标识。有用的,如果复制没有崩溃,在这种情况下,有可能具有相同名称的几个特点。


参数:t.test
The result of the t-test.
t检验的结果。


参数:p.value
The corresponding p.values.
相应p.values。


参数:adj.p.value
P-values after correcting for multiple testing using the Benjamini-Holm method.
P值修正后为多个测试使用的Benjamini霍尔姆方法。


参数:ddCt
The deltadeltaCt values.
值的deltadeltaCt。


参数:FC
The fold change; 2^(-ddCt).
倍; 2 ^(DDCT)。


参数:meanTest
The average Ct across the test samples for the given comparison.
整个测试样品的平均CT对给定的比较。


参数:meanReference
The average Ct across the reference samples for the given comparison.
整个参考样本的平均Ct为给定的比较。


参数:categoryTest
The category of the Ct values ("OK", "Undetermined") across the test samples for the given comparison.
整个测试样品的Ct值(“OK”,“未决定用途”)为给定的比较类。


参数:categoryReference
The category of the Ct values ("OK", "Undetermined") across the reference samples for the given comparison.
整个给定的比较参考样品Ct值的类别(“OK”,“未决定用途”)。

Also, the last item in the list is called "Summary", and it's the result of calling decideTests from limma on the fitted data. This is a data frame with one row per feature and one column per comparison, with downregulation, no change and upregulation marked by -1, 0 and 1.
此外,列表中的最后一个项目被称为“摘要”,它调用decideTests从limma数据拟合的结果。这是功能和每一个比较列一排,每一个数据框的下调,没有变化,-1,0和1的标记上调。


作者(S)----------Author(s)----------


Heidi Dvinge



参考文献----------References----------

R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, W. Huber (eds), Springer, New York, pages 397–420.

参见----------See Also----------

lmFit, contrasts.fit and ebayes for more information about the underlying limma functions. mannwhitneyCtData and ttestCtData for other functions calculating differential expression of Ct data. plotCtRQ, heatmapSig and plotCtSignificance can be used for visualising the results.
lmFit,contrasts.fit和ebayes更多有关基础limma功能的信息。 mannwhitneyCtData和ttestCtDataCT数据的计算差表达的其他职能。 plotCtRQ,heatmapSig和plotCtSignificance可以使用可视化的结果。


举例----------Examples----------


# Load example preprocessed data[加载预处理数据的例子]
data(qPCRpros)
samples <- read.delim(file.path(system.file("exData", package="HTqPCR"), "files.txt"))
# Define design and contrasts[定义设计和对比]
design <- model.matrix(~0+samples$Treatment)
colnames(design) <- c("Control", "LongStarve", "Starve")
contrasts        <- makeContrasts(LongStarve-Control, LongStarve-Starve, Starve-Control, levels=design)
# The actual test[实际测试]
diff.exp <- limmaCtData(qPCRpros, design=design, contrasts=contrasts)
# Some of the results[有些调查结果]
diff.exp[["LongStarve - Control"]][1:10,]
# Example with duplicate genes on card. [例如与卡上的重复基因。]
# Reorder data to get the genes in consecutive rows[重新排列数据,在连续的行得到的基因]
temp        <- qPCRpros[order(featureNames(qPCRpros)),]
diff.exp        <- limmaCtData(temp, design=design, contrasts=contrasts, ndups=2, spacing=1)
# Some of the results[有些调查结果]
names(diff.exp)
diff.exp[["LongStarve - Control"]][1:10,]
diff.exp[["Summary"]][1:10,]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-6 03:56 , Processed in 0.024217 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表