找回密码
 注册
查看: 684|回复: 0

R语言 HTqPCR包 HTqPCR-package()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-25 21:48:30 | 显示全部楼层 |阅读模式
HTqPCR-package(HTqPCR)
HTqPCR-package()所属R语言包:HTqPCR

                                        Analysis of High-Throughput qPCR data (HTqPCR)
                                         高通量的定量PCR数据分析(HTqPCR)

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This package is for analysing high-throughput qPCR data. Focus is on data from Taqman Low Density Arrays, but any kind of qPCR performed across several samples is applicable. Cycle threshold (Ct) data from different cards (samples) is read in, normalised, processed and the genes are tested for differential expression across different samples. Results are visualised in various ways.
这个包是高通量定量PCR数据分析。重点是对数据的TaqMan低密度阵列,但任何一种跨越几个样品进行定量PCR是适用的。循环阈值(CT)来自不同的卡(样品)的数据读取,标准化,加工和基因差异表达在不同的样品测试。在各种方式的可视化结果。


Details

详情----------Details----------


作者(S)----------Author(s)----------



Maintainer: Heidi Dvinge <heidi@ebi.ac.uk>
Maintainer: Paul Bertone <bertone@ebi.ac.uk>




举例----------Examples----------


# Locate example data and create qPCRset object[找到示例数据,和创建qPCRset对象]
exPath <- system.file("exData", package="HTqPCR")
exFiles <- read.delim(file.path(exPath, "files.txt"))
raw <- readCtData(files=exFiles$File, path=exPath)
# Preprocess[预处理]
raw.cats        <- setCategory(raw, groups=exFiles$Treatment, plot=FALSE)
norm        <- normalizeCtData(raw.cats, norm="scale.rank")
# Various plots[各种图]
plotCtDensity(norm)
plotCtBoxes(norm)
plotCtOverview(norm, groups=exFiles$Treatment, genes=featureNames(raw)[1:10], calibrator="Control")
plotCtCor(norm)
plotCtScatter(norm, cards=c(1,4), col="type")
# Define design and contrasts for testing differential expression[定义为设计和对比测试的差异表达]
design <- model.matrix(~0+exFiles$Treatment)
colnames(design) <- c("Control", "LongStarve", "Starve")
contrasts        <- makeContrasts(LongStarve-Control, LongStarve-Starve, Starve-Control, levels=design)
# Reorder by featureNames (2 replicates of each feature) and the actual test[重新排列featureNames(2每个功能重复)和实际测试]
norm2        <- norm[order(featureNames(norm)),]
diff.exp <- limmaCtData(norm2, design=design, contrasts=contrasts, ndups=2, spacing=1)
# Some of the results[有些调查结果]
names(diff.exp)
diff.exp[["LongStarve - Control"]][1:10,]
diff.exp[["Summary"]][1:10,]
# Some plots of results[一些图的结果]
plotCtRQ(diff.exp, genes=1:10)
plotCtSignificance(qDE=diff.exp, q=norm2, groups=exFiles$Treatment, calibrator="Control", target="LongStarve", genes=1:10, jitter=0.2)
plotCtSignificance(qDE=diff.exp, q=norm2, comparison="LongStarve - Starve", groups=exFiles$Treatment, calibrator="Starve", target="LongStarve", genes=1:10, jitter=0.2)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-6 04:06 , Processed in 0.028464 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表