找回密码
 注册
查看: 462|回复: 0

R语言 HTqPCR包 changeCtLayout()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-25 21:47:39 | 显示全部楼层 |阅读模式
changeCtLayout(HTqPCR)
changeCtLayout()所属R语言包:HTqPCR

                                        Changing the dimensions (rows x columns) of qPCRset objects
                                         更改尺寸(行X列)的qPCRset对象

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

A function for splitting up the individual qPCR cards, in case there are multiple samples present on each card. I.e. for cases where the layout isn't 1 sample x 384 features, but for example 4 samples x 96 features on each 384 well card.
每个卡上提出了个人的qPCR卡,如果有多个样品一个分裂的功能。即布局是不是1样本x 384功能,但4个样本,例如×96每384卡的功能。


用法----------Usage----------


changeCtLayout(q, sample.order)



参数----------Arguments----------

参数:q
a qPCRset object.
qPCRset对象


参数:sample.order
vector, same length as number of features on each card (e.g. 384). See details.
向量,长度相同的功能,每张卡上的数量(如384)。查看详情。


Details

详情----------Details----------

The result from each qPCR run of a given card typically gets presented together, such as in a file with 384 lines, one per feature, for 384 well plates. However, some cards may contain multiple samples, such as commercial cards that are designed to be loaded with two separate samples and then include 192 individual features.
从一个给定的卡运行每个qPCR的结果通常会一起提出,如在一个文件,384线,每个功能之一,为384孔板。然而,有些卡可能包含多个样本,如商务卡,被设计成两个独立的样本加载,然后包括192个人的特点。

Per default, each card is read into the qPCRset object as consisting of a single sample, and hence one column in the Ct data matrix. When this is not the case, the data can subsequently be split into the correct features x samples (rows x columns) dimensions using this function. The parameter sample.order is a vector, that for each feature in the qPCRset indicates what sample it actually belongs to.
每默认情况下,每张卡读入qPCRset对象组成的一个样本,因此在CT数据矩阵的一列。当这种情况并非如此,数据可以随后被分裂成正确的功能x样品(行×列),使用此功能的尺寸。参数sample.order是一个向量,每个功能在qPCRset什么样品,它实际上属于。

In the new qPCRset the samples (Ct columns) are ordered first by sample.order then by the original sampleNames, as shown in the examples below.
在新的qPCRset样品(CT列)首次订购sample.order然后由原始的sampleNames,在下面的例子所示。


值----------Value----------

A qPCRset object like the input, but with the dimensions changed according to the new layout.
一个输入一样,但尺寸qPCRset对象改变,根据新的布局。


注意----------Note----------

Since the actual biological samples are likely to differ on each card, after applying changeCtLayout renaming of the samples in qPCRset using sampleNames is advisable.
由于实际的生物样品有可能应用changeCtLayout样品更名后,每张卡不同qPCRset用sampleNames最好。

The features are assumed to be identical for all samples on a given card! I.e. if for example sample.order=rep(c("A", "B"), each=192), then feature number 1 (the first for sample A) should be the same as feature number 193 (the first for sample B). The new featureNames are taken for those features listed as belonging to the first sample in sample.order.
被假定为一个给定的卡上的所有样品相同的功能!即例如,如果sample.order=rep(c("A", "B"), each=192),然后功能号码1(样品A)应是相同的功能号码193(样品B)。新的featureNames属于sample.order第一个样本中所列的功能。


作者(S)----------Author(s)----------


Heidi Dvinge



举例----------Examples----------


# Example data[示例数据]
data(qPCRraw)
# With e.g. 2 or 4 samples per 384 well card.[与如2个或4个样本每384卡。]
sample2.order        <- rep(c("subSampleA", "subSampleB"), each=192)
sample4.order        <- rep(c("subA", "subB", "subC", "subD"), each=96)
# Splitting the data into all individual samples[分裂到所有个体的样本数据]
qPCRnew2 <- changeCtLayout(qPCRraw, sample.order=sample2.order)
show(qPCRnew2)
qPCRnew4 <- changeCtLayout(qPCRraw, sample.order=sample4.order)
show(qPCRnew4)
sampleNames(qPCRnew4)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-6 04:07 , Processed in 0.019771 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表