hem.eb.prior(HEM)
hem.eb.prior()所属R语言包:HEM
Empirical Bayes (EB) Prior Specification
经验Bayes(EB),在此之前规范
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Estimates experimental and biological variances by LPE and resampling
估计由液相和重采样实验和生物差异
用法----------Usage----------
hem.eb.prior(dat, n.layer, design,
method.var.e="neb", method.var.b="peb", method.var.t="neb",
rep=TRUE, baseline.var="LPE", p.remove=0, max.chip=4,
q=0.01, B=25, n.digits=10, print.message.on.screen=TRUE)
参数----------Arguments----------
参数:dat
data
数据
参数:n.layer
number of layers
层数
参数:design
design matrix
设计矩阵
参数:method.var.e
prior specification method for experimental variance; "peb"=parametric EB prior specification, "neb"=nonparametric EB prior specification
事先规范实验方差方法“PEB”=参数的EB事先规范,“纳布”=非参数的EB事先规范
参数:method.var.b
prior specification method for biological variance; "peb"=parametric EB prior specification
“PEB”=参数的EB事先规范生物变异的事先规范的方法;
参数:method.var.t
prior specification method for total variance; "peb"=parametric EB prior specification, "neb"=nonparametric EB prior specification
总方差方法事先规范“PEB”=参数的EB事先规范,“纳布”=非参数的EB事先规范
参数:rep
no replication if FALSE
如果为FALSE没有复制
参数:baseline.var
baseline variance estimation method: LPE for replicated data and BLPE, PSE, or ASE for unreplicated data
基线方差估计方法:复制的数据和BLPE,PSE,或者未复制的数据日月光液相外延
参数:p.remove
percent of removed rank-variance genes for BLPE
百分之BLPE基因删除秩方差
参数:max.chip
maximum number of chips to estimate errors
芯片的最大数目估计错误
参数:q
quantile for paritioning genes based on expression levels
位数paritioning基因的基础上表达水平
参数:B
number of iterations for resampling
迭代次数为重采样
参数:n.digits
number of digits
的位数
参数:print.message.on.screen
if TRUE, process status is shown on screen.
如果为TRUE,进程状态显示在屏幕上。
值----------Value----------
参数:var.b
prior estimate matrix for biological variances (n.layer=2)
生物差异事先估计矩阵(n.layer = 2)
参数:var.e
prior estimate matrix for experiemtnal variances (n.layer=2)
事先估计矩阵experiemtnal差异(n.layer = 2)
参数:var.t
prior estimate matrix for total variances (n.layer=1)
事先估计总变异矩阵(n.layer = 1)
作者(S)----------Author(s)----------
HyungJun Cho and Jae K. Lee
参见----------See Also----------
hem, hem.fdr
hem,hem.fdr
举例----------Examples----------
#Example 1: Two-layer HEM with EB prior specification[例1:双层下摆与EB事先规范]
data(pbrain)
##construct a design matrix[#构造设计矩阵]
cond <- c(1,1,1,1,1,1,2,2,2,2,2,2)
ind <- c(1,1,2,2,3,3,1,1,2,2,3,3)
rep <- c(1,2,1,2,1,2,1,2,1,2,1,2)
design <- data.frame(cond,ind,rep)
##normalization[#标准化]
pbrain.nor <- hem.preproc(pbrain[,2:13])
##take a subset for a testing purpose;[#用于测试目的的一个子集;]
##use all genes for a practical purpose[#实际用途使用的所有基因]
pbrain.nor <- pbrain.nor[1:1000,]
##estimate hyperparameters of variances by LPE[#方差估计液相hyperparameters]
#pbrain.eb <- hem.eb.prior(pbrain.nor, n.layer=2, design=design,[pbrain.eb < - hem.eb.prior(pbrain.nor,n.layer = 2,设计=设计,]
# method.var.e="neb", method.var.b="peb") [method.var.e =“纳布”,“method.var.b =”PEB)]
#fit HEM with two layers of error[适合下摆两层的错误]
#using the small numbers of burn-ins and MCMC samples for a testing purpose;[使用烧伤插件的MCMC样本和测试目的的小数字;]
#but increase the numbers for a practical purpose [但增加的实际用途的数字]
#pbrain.hem <- hem(pbrain.nor, n.layer=2, design=design,burn.ins=10, n.samples=30, [pbrain.hem < - 下摆(pbrain.nor,n.layer = 2,设计设计,burn.ins = 10,n.samples = 30,]
# method.var.e="neb", method.var.b="peb", [method.var.e =“纳布”,method.var.b =“PEB”]
# var.e=pbrain.eb$var.e, var.b=pbrain.eb$var.b)[var.e = $ pbrain.eb var.e,var.b = pbrain.eb美元var.b)]
#Example 2: One-layer HEM with EB prior specification[例2:1层的下摆与EB事先规范]
data(mubcp)
##construct a design matrix[#构造设计矩阵]
cond <- c(rep(1,6),rep(2,5),rep(3,5),rep(4,5),rep(5,5))
ind <- c(1:6,rep((1:5),4))
design <- data.frame(cond,ind)
##normalization[#标准化]
mubcp.nor <- hem.preproc(mubcp)
##take a subset for a testing purpose;[#用于测试目的的一个子集;]
##use all genes for a practical purpose[#实际用途使用的所有基因]
mubcp.nor <- mubcp.nor[1:1000,]
##estimate hyperparameters of variances by LPE[#方差估计液相hyperparameters]
#mubcp.eb <- hem.eb.prior(mubcp.nor, n.layer=1, design=design,[mubcp.eb < - hem.eb.prior(mubcp.nor,n.layer = 1,设计=设计,]
# method.var.t="neb") [method.var.t =“纳布”)]
#fit HEM with two layers of error[适合下摆两层的错误]
#using the small numbers of burn-ins and MCMC samples for a testing purpose;[使用烧伤插件的MCMC样本和测试目的的小数字;]
#but increase the numbers for a practical purpose [但增加的实际用途的数字]
#mubcp.hem <- hem(mubcp.nor, n.layer=1, design=design, burn.ins=10, n.samples=30, [mubcp.hem < - 下摆(mubcp.nor,n.layer = 1,设计设计,burn.ins = 10,n.samples = 30,]
# method.var.t="neb", var.t=mubcp.eb$var.t)[method.var.t =“纳布”,var.t = mubcp.eb var.t)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|