analyse.output(GRENITS)
analyse.output()所属R语言包:GRENITS
Analysis Plots
分析图
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Analyse output from network inference functions. Basic convergence and analysis plots.
分析网络推理功能的输出。基本趋同和分析图。
用法----------Usage----------
analyse.output(output.folder, timeSeries = NULL)
参数----------Arguments----------
参数:output.folder
Name of folder (including path) where chains are kept
链保持文件夹的名称(包括路径)
参数:timeSeries
Only used by NonLinearModel analysis. Data matrix containing gene expression time series. Where genes will be placed in rows and time points in columns.
仅用于NonLinearModel分析。含有基因表达的时间序列数据矩阵。基因将被放置行和列的时间点。
Details
详情----------Details----------
Read first two chains run and plot some basic convergence plots (ConvergencePlots.pdf), analysis plots (AnalysisPlots.pdf), as well as inferred network probabilities in two formats (NetworkProbability_List.txt and NetworkProbability_Matrix.txt).
先读两个链的运行,并绘制一些基本的收敛图(ConvergencePlots.pdf),分析图(AnalysisPlots.pdf),以及推断网络的概率在两种格式(NetworkProbability_List.txt和NetworkProbability_Matrix.txt)。
值----------Value----------
The output of the analysis will be four files (five if nonLinearNet). The contents of the two plot files change depending on the network inference function used.
分析的输出将是四个文件(如果nonLinearNet 5)。两个图形文件的内容改变取决于使用网络上的推理功能。
参数:ConvergencePlots.pdf
Basic convergence plots. The posterior means of each variable are compared.
基本收敛图。后每个变量的手段进行了比较。
参数:AnalysisPlots.pdf
Heatmap plot of network link probabilities as well as marginal network uncertainty plot. A plot of the number of links predicted by the model for a given probability threshold. For ReplicatesNet_student, the posterior distribution of the degrees of freedom are also plotted. For NonLinearNet, the posterior of the smoothness parameter is plotted.
热图网络连接概率的图以及边缘网络的不确定性的图。对于一个给定的概率阈值模型预测的链接数量的图。 ReplicatesNet_student,后验分布的自由度也绘制。为NonLinearNet,平滑参数后绘制。
参数:NetworkProbability_List.txt
Posterior probabilities for each network connection in list format, including posterior interaction strength for linear models. Can be imported with network analysis software such as cytoscape.
后验概率为每个网络连接列表格式,包括线性模型后相互作用的强度。 Cytoscape的分析,如网络软件可以导入。
参数:NetworkProbability_Matrix.txt
Posterior probabilities for each network connection in matrix format.
每个矩阵格式的网络连接后验概率。
参数:ProbNumParents.txt
Posterior probabilities for number of regulators for each gene.
每个基因的监管机构的数量后验概率。
参数:InferredFunctionPlots.pdf
(Only for nonLinearNet) Posterior distribution of predicted functions. Data values are plotted as circles.
(仅适用于nonLinearNet)后验分布的预测功能。数据值绘制成圈。
参考文献----------References----------
networks using time course data with repeated measurements. Bioinformatics 2010; doi: 10.1093/bioinformatics/btq421
topology of a nonlinear sparse gene regulatory network using fully Bayesian spline autoregression Biostatistics 2011; doi: 10.1093/biostatistics/kxr009
参见----------See Also----------
NonLinearNet, LinearNet, ReplicatesNet_student , ReplicatesNet_gauss.
NonLinearNet,LinearNet,ReplicatesNet_student ,ReplicatesNet_gauss。
举例----------Examples----------
# Load A. thaliana circadian clock ODE generated data[生成的数据负载拟南芥生物钟的ODE]
data(Athaliana_ODE)
# Folder where raw runs will be kept and analysed[原料运行文件夹中,将保留和分析]
output.folder <- paste(tempdir(), "/Example_LinearNet",sep="")
# Run network inference, place raw results in output.folder[运行网络推断,原始结果将在output.folder]
LinearNet(output.folder, Athaliana_ODE)
# Analyse raw results, place analysis plots and files in output.folder[分析原料的结果,地方分析图和文件,在output.folder]
analyse.output(output.folder)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|