exome_minp(GGtools)
exome_minp()所属R语言包:GGtools
acquire minimum p-value for association between genotype and expression
获得最低基因型和表现之间的关联p值
译者:生物统计家园网 机器人LoveR
描述----------Description----------
acquire minimum p-value for association between genotype and expression in context of exome genotyping – where a list of SNPs associated with genes or exons governs organization of tests, and minimum p-value per gene or exon is all that is required
获得最低协会之间的基因型和外显子组基因分型中的表达P-值 - 相关SNPs与基因外显子的管治组织的测试,每个基因或外显子和最小的p值列表的所有要求
用法----------Usage----------
exome_minp(smlSet, fmla, targdir, runname, snpl, feat=NULL, mgr = NULL, scoreApply=lapply, ...)
参数----------Arguments----------
参数:smlSet
basic genotype plus expression structure; this must have an smList() result of length 1 (all SNP in one SnpMatrix regardless of number of chromosomes)
基本型,加上表达结构;必须有一个smList()长度为1的结果(所有的SNP在一个SnpMatrix无论染色体数目)
参数:fmla
formula expressing covariates to be found in phenoData of smlSet and used in each association model
公式表示协变量被发现在smlSet phenoData和每个关联模型中使用
参数:targdir
folder where ff files will be written
文件夹的文件将被写入FF
参数:runname
prefix for names of ff files
FF文件名的前缀
参数:snpl
a named list, with one element per gene or exon, each element is name of snps assayed for the associated gene or exon; names of list elements are the gene or exon names
命名列表,每一个基因或外显子元素,每个元素是检测相关的基因或外显子单核苷酸多态性的名称列表中的元素的名称是基因或外显子的名字
参数:feat
name of feature for focused reporting; important if names of features of original smlSet don't agree with names of snpl
集中报告功能名称;重要如果原smlSet功能名称不同意与snpl名称
参数:mgr
if an eqtlTestsManager (with fflist of length 1) is already available, this can be used instead of constructing one from the smlSet
,如果eqtlTestsManager(长度为1 fflist)已经可用,这可以用来代替建设的smlSet之一
参数:scoreApply
lapply-like function to be used to compute scores – use mclapply for multicore deployment
lapply一样功能,可用于计算分数 - 使用多核部署mclapply
参数:...
parameters passed to eqtlTests
参数传递到eqtlTests
举例----------Examples----------
if (!exists("hmceuB36.2021")) hmceuB36.2021 <- getSS("GGtools", c("20", "21"))
hmlit = hmceuB36.2021[ chrnum(20), ]
library(illuminaHumanv1.db)
cptag = get("CPNE1", revmap(illuminaHumanv1SYMBOL))
indc = which(featureNames(hmlit) == cptag[1])
hm = dropMonomorphies(hmlit[c(indc,1:19),]) # reduce problem[减少的问题]
curd = getwd()
td = tempdir()
setwd(td)
sl = colnames(smList(hm)[[1]])[1:80]
sl = split(sl, rep(1:20, each=4))
names(sl) = featureNames(hm)
e1 = exome_minp( hm, ~male, "ex1", "ex1", sl )
e1
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|