找回密码
 注册
查看: 456|回复: 0

R语言 GeneSelector包 RepeatRanking()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-25 19:04:55 | 显示全部楼层 |阅读模式
RepeatRanking(GeneSelector)
RepeatRanking()所属R语言包:GeneSelector

                                        Repeat the ranking procedure for altered data sets
                                         重复改变数据集的排序过程

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Altered data sets are typically prepared by calls to GenerateFoldMatrix or GenerateBootMatrix. The ranking procedure is then repeated for each of these new 'artificial' data sets. One major goal of this procedure is to examine the stability of the results obtained with the original dataset.
修改过的数据集,通常准备由调用到GenerateFoldMatrix或GenerateBootMatrix的。排名的过程,然后重复这些新的“人工”数据集。此过程的一个主要目标是研究的原始数据集所取得的成果的稳定。


用法----------Usage----------





参数----------Arguments----------

参数:R
The original ranking, represented by an object of class GeneRanking.
原来的排名,代表由类GeneRanking的对象。


参数:P
An object of class FoldMatrix or BootMatrix as generated by GenerateFoldMatrix or GenerateBootMatrix, respectively.<br> Can also be missing. In this case, the original dataset is perturbed by adding gaussian noise, s. argument varlist.
类FoldMatrix或BootMatrix作为由GenerateFoldMatrix或GenerateBootMatrix的产生,分别对象。参考也可missing。在这种情况下,原始数据集是通过加入高斯噪声的扰动。参数varlist。


参数:scheme
Used only if P is a Foldmatrix. Can be "subsampling" or "labelexchange". 'Subsampling' means that observations are removed as determined by the slot foldmatrix.  'Labelexchange' means that those observations which would be removed are instead kept in the sample, but are assigned to the opposite class.
只用P是Foldmatrix。可以"subsampling"或"labelexchange"。 “欠采样”的意见将被删除插槽foldmatrix确定。 “Labelexchange”是指那些将被删除的意见,而不是保存在样本,但被分配到对面的类。


参数:iter
Used only if P is missing, specifying the number of different noise-perturbed datasets to be created. Per default, the number of iterations is 10.
用于只有P失踪,指定不同的噪声扰动要创建的数据集的数目。每默认情况下,迭代次数是10。


参数:varlist
Used only if P is missing. A list with two components (genewise, a logical and frac, a positive real number), both controlling the variance of the added noise. If  genewise=FALSE (default) then the noise has the same variance for all genes: it is estimated by pooled variance estimation from the original data set. Otherwise, the variance of the noise is different for each gene and estimated genewise from the original data set. frac is the fraction of the variance of the estimated variance(s) to be used as the variance of the added noise. The default value is 1/5 and is usually smaller than 1.
仅用于P如果缺少。两个组件(genewise逻辑和frac,一个正实数),同时控制增加噪声的方差名单。如果genewise=FALSE(默认),那么噪声的所有基因变异:它是由从原始数据集汇集方差估计估计。否则,噪声的方差是为每一个基因的不同,估计2-6。从原始数据集。 frac是小部分将用于增加噪声的方差估计方差(S)的方差。默认值是1/5通常是小于1。


参数:...
Further arguments to be passed to the ranking method from which rankings are generated.
要传递给排名的方法,从排名产生进一步的论据。


值----------Value----------

An object of class RepeatedRanking
一个类RepeatedRanking对象


作者(S)----------Author(s)----------


Martin Slawski  <br>
Anne-Laure Boulesteix



参见----------See Also----------

GeneRanking, RepeatedRanking, RankingTstat, RankingFC, RankingWelchT, RankingWilcoxon, RankingBaldiLong, RankingFoxDimmic, RankingLimma,  RankingEbam, RankingWilcEbam, RankingSam,  RankingShrinkageT, RankingSoftthresholdT,
GeneRanking,RepeatedRanking,RankingTstat RankingFC,RankingWelchT,RankingWilcoxon,RankingBaldiLong,RankingFoxDimmic,RankingLimma,RankingEbam,RankingWilcEbam,RankingSam,RankingShrinkageT,RankingSoftthresholdT


举例----------Examples----------


## Load toy gene expression data[#加载玩具基因表达数据]
data(toydata)
### class labels[##类的标签]
yy <- toydata[1,]
### gene expression[##基因表达]
xx <- toydata[-1,]
### Get ranking for the original data set, with the ordinary t-statistic[#获取原始数据集的排名,与普通的t-统计]
ordT <- RankingTstat(xx, yy, type="unpaired")
### Generate the leave-one-out / exchange-one-label matrix[#生成假一出/标签交换矩阵]
loo <- GenerateFoldMatrix(y = yy, k=1)
### Repeat the ranking with the t-statistic, using the leave-one-out scheme[#重复t-统计的排名,用留一出计划]
loor_ordT <- RepeatRanking(ordT, loo)
### .. or the label exchange scheme[#..或标签交换计划]
ex1r_ordT <- RepeatRanking(ordT, loo, scheme = "labelexchange")
### Generate the bootstrap matrix[#生成引导矩阵]
boot <- GenerateBootMatrix(y = yy, maxties=3, minclassize=5, repl=30)
### Repeat ranking with the t-statistic for bootstrap replicates[#重复t-统计的排名为引导复制]
boot_ordT <- RepeatRanking(ordT, boot)
### Repeat the ranking procedure for an altered data set with added noise[#重复增加的噪声设置改变数据的排名过程]
noise_ordT <- RepeatRanking(ordT, varlist=list(genewise=TRUE, factor=1/10))

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-7 20:48 , Processed in 0.027816 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表