RankingSam(GeneSelector)
RankingSam()所属R语言包:GeneSelector
Ranking based on the SAM statistic
对SAM统计综合
译者:生物统计家园网 机器人LoveR
描述----------Description----------
A wrapper function to the samr package.
samr包一个包装函数。
用法----------Usage----------
RankingSam(x, y, type = c("unpaired", "paired", "onesample"), pvalues = TRUE, gene.names = NULL, ...)
参数----------Arguments----------
参数:x
A matrix of gene expression values with rows corresponding to genes and columns corresponding to observations or alternatively an object of class ExpressionSet.<br> If type = paired, the first half of the columns corresponds to the first measurements and the second half to the second ones. For instance, if there are 10 observations, each measured twice, stored in an expression matrix expr, then expr[,1] is paired with expr[,11], expr[,2] with expr[,12], and so on.
一个matrix基因表达值与相应的基因和相应的意见,或者一个对象类ExpressionSet。参考列的行,如果type = paired上半年,列对应第一次测量和下半年第二。例如,如果有10个观测,每个测两次,表达矩阵expr,则expr[,1]expr[,11],expr[,2]搭配expr[,12]存储 ,等等。
参数:y
If x is a matrix, then y may be a numeric vector or a factor with at most two levels.<br> If x is an ExpressionSet, then y is a character specifying the phenotype variable in the output from pData.<br> If type = "paired", take care that the coding is analogously to the requirement concerning x.
x如果是一个矩阵,然后y可能是一个numeric矢量或在大多数两个级别的一个因素。参考如果x是ExpressionSet ,然后y是pData。参考型变量指定输出的字符,如果type = "paired",照顾编码类似的要求是关于x 。
参数:type
"unpaired":two-sample test.
“未成”:两样本测试。
"paired":paired test. Take care that the coding of y is correct (s. above).
“配对”配对测试。照顾y编码是正确的(S.以上)。
"onesample":y has only one level. Test whether the true mean is different from zero.
“onesample”:y只有一个级别。测试是否是真正的平均异于零。
参数:pvalues
Should p-values be computed ? Default is TRUE.
应的p值计算?默认TRUE。
参数:gene.names
An optional vector of gene names.
一个基因名称可选的向量。
参数:...
Further arguments to be passed to samr. Consult the help of the samr package for details.
进一步的参数被传递到samr。咨询samr包细节的帮助。
值----------Value----------
An object of class GeneRanking.
对象类GeneRanking。
注意----------Note----------
The computing time is relatively high, due to the fact that permutation
计算时间是比较高的,因为事实上,置换
作者(S)----------Author(s)----------
Martin Slawski <br>
Anne-Laure Boulesteix
参考文献----------References----------
Significance analysis of microarrays applied to the ionizing radiation response. PNAS, 98, 5116-5121.
Comparison of the Empirical Bayes and the Significance Analysis of Microarrays. Technical Report, University of Dortmund.
参见----------See Also----------
RepeatRanking, RankingTstat, RankingFC, RankingWelchT, RankingWilcoxon, RankingBaldiLong, RankingFoxDimmic, RankingLimma, RankingEbam, RankingWilcEbam, RankingShrinkageT, RankingSoftthresholdT,
RepeatRanking,RankingTstat,RankingFC,RankingWelchT,RankingWilcoxon,RankingBaldiLong,RankingFoxDimmic,RankingLimma,RankingEbam,RankingWilcEbam,RankingShrinkageT,RankingSoftthresholdT
举例----------Examples----------
### Load toy gene expression data[#负载玩具基因表达数据]
data(toydata)
### class labels[##类的标签]
yy <- toydata[1,]
### gene expression[##基因表达]
xx <- toydata[-1,]
### run RankingSam[#运行RankingSam]
sam <- RankingSam(xx, yy, type="unpaired")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|