compare.proto.cor(genefu)
compare.proto.cor()所属R语言包:genefu
Function to statistically compare correlation to prototypes
功能统计学比较相关的原型
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function performs a statistical comparison of the correlation coefficients as computed between each probe and prototype.
执行此功能的相关系数计算每个探针和原型之间的统计比较。
用法----------Usage----------
compare.proto.cor(gene.cor, proto.cor, nn,
p.adjust.m = c("none", "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr"))
参数----------Arguments----------
参数:gene.cor
Correlation coefficients between the probes and each of the prototypes.
探针和原型之间的相关系数。
参数:proto.cor
Pairwise correlation coefficients of the prototypes.
成对相关系数的原型。
参数:nn
Number of samples used to compute the correlation coefficients between the probes and each of the prototypes.
探针和原型之间的相关系数来计算的样本数。
参数:p.adjust.m
Correction method as defined in p.adjust.
校正方法定义在p.adjust。
值----------Value----------
Data frame with probes in rows and with three columns: "proto" is the prototype to which the probe is the most correlated, "cor" is the actual correlation, and "signif" is the (corrected) p-value for the superiority of the correlation to this prototype compared to the second highest correlation.
数据框与行的探针和三列:“原”的原型,该探针是最相关的,“心病”是实际的相关,“signif”(修正)的P-值相关的优势,这个原型相比,第二次的相关性最高。
作者(S)----------Author(s)----------
Benjamin Haibe-Kains
参见----------See Also----------
compute.proto.cor.meta, compute.pairw.cor.meta
compute.proto.cor.meta,compute.pairw.cor.meta
举例----------Examples----------
## load VDX dataset[#加载VDX的数据集]
data(vdxs)
## load NKI dataset[#负载NKI日经指数集]
data(nkis)
## reduce datasets[#减少数据集]
ginter <- intersect(annot.vdxs[ ,"EntrezGene.ID"], annot.nkis[ ,"EntrezGene.ID"])
ginter <- ginter[!is.na(ginter)][1:30]
myx <- unique(c(match(ginter, annot.vdxs[ ,"EntrezGene.ID"]),
sample(x=1:nrow(annot.vdxs), size=20)))
data2.vdxs <- data.vdxs[ ,myx]
annot2.vdxs <- annot.vdxs[myx, ]
myx <- unique(c(match(ginter, annot.nkis[ ,"EntrezGene.ID"]),
sample(x=1:nrow(annot.nkis), size=20)))
data2.nkis <- data.nkis[ ,myx]
annot2.nkis <- annot.nkis[myx, ]
## mapping of datasets[#数据集的映射]
datas <- list("VDX"=data2.vdxs,"NKI"=data2.nkis)
annots <- list("VDX"=annot2.vdxs, "NKI"=annot2.nkis)
datas.mapped <- map.datasets(datas=datas, annots=annots, do.mapping=TRUE)
## define some prototypes[#定义一些原型]
protos <- paste("geneid", ginter[1:3], sep=".")
## compute meta-estimate of correlation coefficients to the three prototype genes[#元计算相关系数估计的三个原型基因]
probecor <- compute.proto.cor.meta(datas=datas.mapped$datas, proto=protos,
method="pearson")
## compute meta-estimate of pairwise correlation coefficients between prototypes[#计算原型之间的成对相关系数估计元]
datas.proto <- lapply(X=datas.mapped$datas, FUN=function(x, p) {
return(x[ ,p,drop=FALSE]) }, p=protos)
protocor <- compute.pairw.cor.meta(datas=datas.proto, method="pearson")
## compare correlation coefficients to each prototype[#每个原型比较相关系数]
res <- compare.proto.cor(gene.cor=probecor$cor, proto.cor=protocor$cor,
nn=probecor$cor.n, p.adjust.m="fdr")
head(res)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|