找回密码
 注册
查看: 525|回复: 0

R语言 gaga包 findgenes()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-25 18:20:49 | 显示全部楼层 |阅读模式
findgenes(gaga)
findgenes()所属R语言包:gaga

                                         Find differentially expressed genes after GaGa fit.
                                         找到后GAGA适合差异基因表达。

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Obtains a list of differentially expressed genes using the posterior probabilities from a GaGa or MiGaGa fit. For parametric==TRUE the procedure controls the Bayesian FDR below fdrmax. For parametric==FALSE it controls the estimated frequentist FDR.
获得一个从一个GAGA或MiGaGa适合的中使用的后验概率的基因,差异表达的名单。 parametric==TRUE过程控制下面fdrmax贝叶斯FDR。 parametric==FALSE它的的估计frequentistFDR控制。


用法----------Usage----------


findgenes(gg.fit, x, groups, fdrmax=.05, parametric=TRUE, B=500)



参数----------Arguments----------

参数:gg.fit
GaGa or MiGaGa fit (object of type gagafit, as returned by fitGG).  
GAGA或MiGaGa合适的类型gagafit,fitGG返回的对象。


参数:x
ExpressionSet, exprSet, data frame or matrix containing the gene expression measurements used to fit the model.
ExpressionSet,exprSet,数据框或矩阵包含用于拟合模型的基因表达测量。


参数:groups
If x is of type ExpressionSet or exprSet, groups should be the name of the column in pData(x) with the groups that one wishes to compare. If x is a matrix or a data frame, groups should be a vector indicating to which group each column in x corresponds to.
x如果类型ExpressionSet或exprSet,groups应该是列名pData(x)一个愿望比较组。 x如果是一个矩阵或一个数据框,groups应该是哪一组x中的每一列对应的向量。


参数:fdrmax
Upper bound on FDR. </table>
在FDR的上的约束。 </ TABLE>


参数:parametric
Set to TRUE to use the Bayes rule. Set to FALSE to estimate the frequentist FDR non-parametrically.
设置TRUE使用贝叶斯规则。设置FALSE估计frequentist的FDR非参数化。“


参数:B
Number of boostrap samples to estimate FDR non-parametrically (ignored if parametric==TRUE)
自举样品的数量估计FDR的非参数化(忽略如果parametric==TRUE)


Details

详情----------Details----------

The Bayes rule to minimize expected FNR subject to FDR <=fdrmax declares differentially expressed all genes with posterior probability of being equally expressed below a certain threshold. The value of the threshold is computed exactly for parametric==TRUE, FDR being defined in a Bayesian sense. For parametric==FALSE the FDR is defined in a frequentist sense.
贝叶斯规则,以尽量减少预期的FNR受FDR<=fdrmax声明所有被同样表示低于某一阈值后验概率差异表达基因。阈值计算准确,parametric==TRUEFDR贝叶斯意义上的定义。 parametric==FALSEFDR是在frequentist感的定义。


值----------Value----------

List with components:
与组件列表:


参数:truePos
Expected number of true positives.
真阳性的预计数。


参数:d
Vector indicating the pattern that each gene is assigned to.
向量表明,每个基因被分配到的模式。


参数:fdr
Frequentist estimated FDR that is closest to fdrmax.
估计FDRfrequentist最接近到fdrmax的。


参数:fdrpar
Bayesian FDR. If parametric==TRUE, this is equal to fdrmax. If parametric==FALSE, it's the Bayesian FDR needed to achieve frequentist estimated FDR=fdrmax.
贝叶斯FDR。如果parametric==TRUE,这是平等fdrmax。如果parametric==FALSE,它的贝叶斯FDR需要实现frequentist估计FDR=fdrmax。


参数:fdrest
Data frame with estimated frequentist FDR for each target Bayesian FDR
估计frequentistFDR为每个目标贝叶斯FDR的数据框


参数:fnr
Bayesian FNR
贝叶斯的FNR


参数:power
Bayesian power as estimated by expected number of true positives divided by the expected number of differentially expressed genes
贝叶斯权力预期的真阳性数除以预期的差异表达基因数量的估计


参数:threshold
Optimal threshold for posterior probability of equal expression (genes with probability < threshold are declared DE)
平等表达的后验概率的最优阈值(概率<threshold被宣布的基因)


作者(S)----------Author(s)----------


David Rossell



参考文献----------References----------

flexible hierarchical model for microarray

参见----------See Also----------

fitGG, parest
fitGG,parest


举例----------Examples----------


#Not run. Example from the help manual[无法运行。例如,从帮助手册]
#library(gaga)[库(加加)]
#set.seed(10)[set.seed(10)]
#n &lt;- 100; m &lt;- c(6,6)[N < -  100米< -  C(6,6)]
#a0 &lt;- 25.5; nu &lt;- 0.109[A0 < -  25.5; NU < -  0.109]
#balpha &lt;- 1.183; nualpha &lt;- 1683[balpha < -  1.183; nualpha < -  1683]
#probpat &lt;- c(.95,.05)[probpat < -  C(0.95,0.05)]
#xsim &lt;- simGG(n,m,p.de=probpat[2],a0,nu,balpha,nualpha)[simGG XSIM < - (N,M,p.de = probpat [2],A0,Nu,balpha,nualpha)]
#[]
#ggfit &lt;- fitGG(xsim$x[,c(-6,-12)],groups,patterns=patterns,nclust=1)[ggfit < -  fitGG(XSIM $ X,C(-6,-12),团体,花纹图案,nclust = 1)]
#ggfit &lt;- parest(ggfit,x=xsim$x[,c(-6,-12)],groups,burnin=100,alpha=.05)[ggfit < -  parest(ggfit,X = XSIM $ X [,C(-6,-12),团体,燃尽= 100,α= .05)]
#[]
#d &lt;- findgenes(ggfit,xsim$x[,c(-6,-12)],groups,fdrmax=.05,parametric=TRUE)[D < -  findgenes(ggfit,XSIM $ X,C(-6,-12),团体,fdrmax = .05,参数= TRUE时)]
#dtrue &lt;- (xsim$l[,1]!=xsim$l[,2])[dtrue < - (XSIM $ L [1] = XSIM $ L [,2])]
#table(d$d,dtrue)[表(D $ D,dtrue)]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-8 14:13 , Processed in 0.024757 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表