找回密码
 注册
查看: 698|回复: 0

R语言 edgeR包 q2qnbinom()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-25 17:09:46 | 显示全部楼层 |阅读模式
q2qnbinom(edgeR)
q2qnbinom()所属R语言包:edgeR

                                        Quantile to Quantile Mapping between Negative-Binomial Distributions
                                         以负二项分布之间的分量映射位数

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Approximate quantile to quantile mapping between negative-binomial distributions with the same dispersion but different means.
相同的分散性,但不同的手段与负二项分布位数之间的映射的近似分量。


用法----------Usage----------


q2qpois(x, input.mean, output.mean)
q2qnbinom(x, input.mean, output.mean, dispersion=0)



参数----------Arguments----------

参数:x
numeric matrix of unadjusted count data from a DGEList object
未经调整的计数数据从DGEList对象的数字矩阵


参数:input.mean
numeric matrix of estimated mean counts for tags/genes in unadjusted libraries  
数字矩阵的估计平均计数标签为/未经调整库中的基因


参数:output.mean
numeric matrix of estimated mean counts for tags/genes in adjusted (equalized) libraries, the same for all tags/genes in a particular group, different between groups
数字矩阵的估计平均计数标签/调整(扳平)库,特定组中的所有标记/基因相同,不同群体之间的基因


参数:dispersion
numeric scalar, vector or matrix of dispersion parameters
dispersion参数数值标量,向量或矩阵


Details

详情----------Details----------

This function finds the quantile with the same left and right tail probabilities relative to the output mean as x has relative to the input mean. q2qpois is equivalent to q2qnbinom with dispersion=0.
此函数查找相同的左,右尾概率相对输出位数的意思x有相对输入的意思。 q2qpois是q2qnbinom与dispersion=0相当于。

This is the function that actually generates the pseudodata for equalizeLibSizes and required by estimateCommonDisp to adjust (normalize) the library sizes and estimate the dispersion parameter. The function takes fixed values of the estimated mean for the unadjusted libraries (input.mean) and the estimated mean for the equalized libraries (output.mean) for each tag, as well as a fixed (tagwise or common) value for the dispersion parameter (phi).
这是实际产生的伪数据equalizeLibSizes和estimateCommonDisp需要调整(标准化)库的大小和估计的色散参数的功能。该函数的估计平均为未经调整库(input.mean)的扳平库(output.mean)的估计,平均每个标签的固定值,以及色散参数为固定值(tagwise或共同) (phi)。

The function calculates the percentiles that the counts in the unadjusted library represent for the normal and gamma distributions with mean and variance defined by the negative binomial rules: mean=input.mean and variance=input.mean*(1+dispersion*input.mean). The percentiles are then used to obtain quantiles from the normal and gamma distributions respectively, with mean and variance now defined as above but using output.mean instead of input.mean. The function then returns as the pseudodata, i.e., equalized libraries, the arithmetic mean of the quantiles for the normal and the gamma distributions. As the actual negative binomial distribution is not used, we refer to this as a "poor man's" NB quantile adjustment function, but it has the advantage of not producing Inf values for percentiles or quantiles as occurs using the equivalent NB functions. If, for any tag, the dispersion parameter for the negative binomial model is 0, then it is equivalent to using a Poisson model. Lower tails of distributions are used where required to ensure accuracy.
函数的计算,未经调整的库中的计数代表由负二项式规则定义的均值和方差的正常和伽玛分布的百分:平均=input.mean和方差=input.mean*(1+dispersion*input.mean)。然后用获得的百分现在如上定义的均值和方差分别从正常和伽玛分布的分位数,但使用output.mean而不是input.mean。然后,该函数返回的伪数据,即扳平库,正常位数的算术平均数和伽玛分布。未使用的实际负二项分布,我们是指此为“穷人”NB位数调整功能,但它具有不产生INF为百分位数的值,如发生使用相当于NB功能的优势。如果任何标记,负二项式模型的色散参数为0,那么它是相当于使用泊松模型。分布较低的尾巴被用来在有需要时,以确保准确性。


值----------Value----------

numeric matrix of the same size as x with quantile-adjusted pseudodata
x位数调整伪数据的大小相同的数字矩阵


作者(S)----------Author(s)----------


Gordon Smyth



举例----------Examples----------


y<-matrix(rnbinom(10000,size=2,mu=10),ncol=4)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000,1010),2))
conc<-estimatePs(d,r=2)
N<-exp(mean(log(d$samples$lib.size)))
in.mean<-matrix(0,nrow=nrow(d$counts),ncol=ncol(d$counts))
out.mean<-matrix(0,nrow=nrow(d$counts),ncol=ncol(d$counts))
for(i in 1:2) {
        in.mean[,d$samples$group==i]<-outer(conc$conc.group[,i],d$samples$lib.size[d$samples$group==i])
        out.mean[,d$samples$group==i]<-outer(conc$conc.group[,i],rep(N,sum(d$samples$group==i)))
}
pseudo<-q2qnbinom(d$counts, input.mean=in.mean, output.mean=out.mean, dispersion=0.5)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-10 23:16 , Processed in 0.025602 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表