dyebias.monotonicity(dyebias)
dyebias.monotonicity()所属R语言包:dyebias
Calculate the degree of monotonicity of the dye bias across the slides. DEPRACATED
计算出的单调的跨越幻灯片染料偏见的程度。 DEPRACATED
译者:生物统计家园网 机器人LoveR
描述----------Description----------
If you order genes by their iGSDB, and hybridizations by slide bias, the graphs of each gene should form a 'fan' out of the origin (see also dyebias.trendplot). This function gives measure of the extent to which this is true.
如果他们iGSDB和按幻灯片偏差杂交秩序基因,每个基因的图应该形成一个出的起源“风扇”(也dyebias.trendplot)的。此功能提供的措施,这是真实的程度。
This function has been depracated, as it is of limited use and takes too long to compute.
此功能已depracated,因为它是有限的使用和计算时间过长。
用法----------Usage----------
dyebias.monotonicity(data,
iGSDBs, dyebias.percentile = 5,
order = NULL)
参数----------Arguments----------
参数:data
The marrayNorm to determine the degree of monotonicity for
marrayNorm来确定单调程度
参数:iGSDBs
A data frame with intrinsic gene-specific dye biases, the same as that used in dyebias.apply.correction, probably returned by <br> dyebias.estimate.iGSDBs; see there for documentation.
可能具有内在的特定基因的染料偏见,在dyebias.apply.correction使用相同的数据框,返回参考dyebias.estimate.iGSDBs;看到那里的文档。
参数:dyebias.percentile
The percentile of intrinsic gene specific dye biases (iGSDBs) for which to highlight the reporters. Default should suffice in almost all cases.
内在基因特定的染料偏见(iGSDBs)突出记者的百分位。默认情况下应该足以在几乎所有情况下。
参数:order
If order==NULL, the slides are sorted by increasing slide bias prior to boxplotting. This is typically done for data that is not yet dye bias corrected. (This order is also returned in the object returned). If order!=NULL, the slides are put into this order first. This is typically done for a dye bias-corrected data set, using the order of the uncorrected set.
如果order==NULL,幻灯片进行排序,增加幻灯片偏见到boxplotting前。这通常是尚未染料偏差纠正的数据。 (这个顺序在返回的对象返回)。如果order!=NULL,幻灯片投入这个顺序第一。这通常是染料偏置校正数据集,使用裸集秩序。
Details
详情----------Details----------
The total dye bias appears to be the product of iGSDB and slide bias. In other words, it is monotonous (always increasing or always decreasing), both with respect to the intrinsic gene specific dye bias and with respect to the slide bias. This function orders genes by their iGSDB and the slides by slide bias. Subsequently a linear regression of each gene is done, with x being the slide bias rank, (not the slide bias itself), and y being the M. The slopes of each linear regression line should be an increasing array of values, representing the 'fan' of lines. The degree to which this array is increasing is tested using the Mann-Kendall test, and is returned. In the case of uncorrected data, tau is generally larger than 0.3. After correction, tau should be close to zero.
总的染料偏见,似乎是的iGSDB和幻灯片偏见的产物。换句话说,它是单调(总是增加或总是下降),两个方面的内在基因特定的染料偏见和尊重幻灯片偏见。此功能令幻灯片偏见,他们iGSDB和幻灯片的基因。随后的每一个基因的线性回归,幻灯片偏见的排名,(幻灯片偏见本身)与X,Y的M.每个线性回归线的斜率应该是一个增加值的阵列,表示“风扇线。这个数组是增加的程度是用Mann-Kendall检验测试,并返回。在裸数据的情况下,头是一般大于0.3。修正后,头应该是接近于零。
值----------Value----------
A dyebias.monotonicity uses cor.test, which returns htest object. To this list an extra element, order, is added, which indicates the ordering of the data set by slide bias. The degree of monotonicity is indicated by the estimate element; its signficance by the p.value element.
一个dyebias.monotonicity使用cor.test,它返回htest对象。此列表的一个额外的元素,order,添加,这表明幻灯片偏置设置数据的顺序。单调的程度表示estimate元素p.value元素的建设的重大意义。
注意----------Note----------
This function takes very long to compute, since it calculates regressions for each gene.
此功能需要很长的时间来计算,因为它计算每个基因的回归。
作者(S)----------Author(s)----------
Philip Lijnzaad <a href="mailto:p.lijnzaad@umcutrecht.nl">p.lijnzaad@umcutrecht.nl</a>
参考文献----------References----------
Kemmeren, P., van Hooff, S.R and Holstege, F.C.P. (2009). Adaptable gene-specific dye bias correction for two-channel DNA microarrays. Molecular Systems Biology, 5:266, 2009. doi:10.1038/msb.2009.21.
参见----------See Also----------
dyebias.trendplot, dyebias.monotonicityplot
dyebias.trendplot,dyebias.monotonicityplot
举例----------Examples----------
## Not run: [#无法运行:]
options(stringsAsFactors = FALSE)
library(dyebias)
library(dyebiasexamples)
data(data.raw)
data(data.norm)
### obtain estimate for the iGSDBs:[#获得的iGSDBs的估计:]
iGSDBs.estimated <- dyebias.estimate.iGSDBs(data.norm,
is.balanced=TRUE,
verbose=FALSE)
### choose the estimators and which spots to correct:[#选择的估计和景点,以纠正:]
estimator.subset <- dyebias.umcu.proper.estimators(maInfo(maGnames(data.norm)))
application.subset <- maW(data.norm) == 1 &
dyebias.application.subset(data.raw=data.raw, use.background=TRUE)
### do the correction:[#做更正:]
correction <- dyebias.apply.correction(data.norm=data.norm,
iGSDBs = iGSDBs.estimated,
estimator.subset=estimator.subset,
application.subset = application.subset,
verbose=FALSE)
cat("monotonicity before correction")
monotonicity <- dyebias.monotonicity(data=data.norm,
iGSDBs=iGSDBs.estimated,
order=NULL)
monotonicity
cat("monotonicity after correction")
dyebias.monotonicity(data=correction$data.corrected,
iGSDBs=iGSDBs.estimated,
order= monotonicity$order)
## End(Not run) [#结束(不运行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|