species.richness.cv(sperich)
species.richness.cv()所属R语言包:sperich
Species richness cross-validation
物种丰富度交叉验证
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function cross-validates the species richness based on given species occurences.
此功能交叉验证的物种丰富度,根据给定的物种出现次数。
用法----------Usage----------
loocv.limit=10, distances=2:10, weight=0.5, dimension, shift,
参数----------Arguments----------
参数:dataset.all.species
A dataset containing the species with their ID (named: speciesID)and the longitude (named: long) and latitude (named: lat) of their occurence location.
数据集包含的物种他们的ID(名为:speciesID)的,其发生“位置的经度(命名为:长)和纬度(名为:纬度)。
参数:landwatermask
A grid containing the land-water-information of the observed area. If a grid cell containes no land, the value of the cell in the landwatermask is -1, otherwise it is 0. Additional, height-informations could be added for land surfaces. In this case, take care of the 'upperbound' value.
的网格中所观察到的区域的土地与水的信息。一个的网格单元containes没有土地如果的landwatermask的单元格中的值是-1,否则为0。另外,土地表面高度的信息可以被添加。在这种情况下,照顾的“上界”的价值。
参数:fold
The number of groups which should be created if the number of occurences is greater than loocv.limit.
的基团的数目应创建的出现次数,如果数量是大于loocv.limit。
参数:loocv.limit
The limit below which the subsamples are created for a leave-one-out-cross-validation instead of a k-fold-cross-validation.
下面的限制创建子样本休假离开交叉验证,而不是一个K倍交叉验证。
参数:distances
The distances which will be used for species range estimation. Should start with value 2.
将用于物种范围估计的距离。应该从价值2。
参数:weight
The tuning parameter of the weighting procedure (details in Raedig et al. 2010).
调整参数的加权处理(详情在Raedig等,2010)。
参数:dimension
The dimension of the processed grid.
处理后的网格尺寸。
参数:shift
The geographic coordinates of the origin of the grid.
GEO坐标的网格原点。
参数:resolution
The resolution of the grid in (geographical) degree.
决议中的网格(区域)学位。
参数:upperbound
This value determines the height (based on values in 'landwatermask') which is considered to be a barrier for species distribution.
此值确定的高度(基于价值观在“landwatermask”),这被认为是物种分布的障碍。
参数:all.species
The vector with the numbers of the species which should be mentioned. If the first value is -1, all species in the database will be used for species richness estimation.
的种类的数目,应提及的向量。如果第一个值是-1,将用于数据库中的所有物种,物种丰富度估计。
参数:silent
A boolean flag that determines wether the report of status messages should be suppressed or not.
一个布尔标志,用于确定羯羊报告应被抑制的状态消息。
Details
详细信息----------Details----------
This routine cross-validates the species richness based on given species occurences through a geometric interpolation model (details in Raedig et al. 2010).
这个例程交叉验证的物种丰富度,根据给定的物种出现通过几何插值模型(详情在Raedig等,2010)。
值----------Value----------
This function returns a grid which contains the cross-validated
这个函数返回一个网格,其中包含了交叉验证
(作者)----------Author(s)----------
Maximilian Lange, Sven Lautenbach
参考文献----------References----------
Reassessing Neotropical angiosperm distribution patterns based on monographic data: a geometric interpolation approach. Biodivers Conserv, 19, 1523-1546.
实例----------Examples----------
##load data[#加载数据]
data(dataset.all.species)
data(dataset.landwater)
##create grid parameters[#创建网格参数。]
dimension <- getDimension(dataset.all.species, resolution=1)
shift <- getShift(dataset.all.species)
##create landwatermask[#创建landwatermask]
landwatermask.nocoast <- createLandwatermask(dataset.landwater,
dimension, shift, resolution=1)
##estimate species richness[#估计物种丰富度]
species.richness.weighted <- species.richness.cv(dataset.all.species,
landwatermask.nocoast, fold=5, loocv.limit=10, distances=2:10,
weight=0.5, dimension, shift, resolution=1, upperbound=5,
all.species=1:20)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|