adjustment(sperich)
adjustment()所属R语言包:sperich
Adjustment of interpolated species richness
调整内插物种丰富度
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This routine adjusts the weighted species richness for sampling effort.
这个例程调整的加权物种丰富度的取样工作。
用法----------Usage----------
adjustment(species.richness, noninterpolatedgrid, clusterlist)
参数----------Arguments----------
参数:species.richness
The grid that should be adjusted. It contains the result of species richness estimation or cross-validation.
应调整的网格。它包含的物种丰富度估计或交叉验证的结果。
参数:noninterpolatedgrid
A grid containing the species occurences (could be created via function 'createNonInterpolatedGrid').
可以创建一个网格包含的物种的出现次数(通过功能createNonInterpolatedGrid“)。
参数:clusterlist
A list of vectors of pixelpositions (created by 'searchClusters') which are spatial related.
的列表的向量pixelpositions(创建由“searchClusters”),空间相关。
Details
详细信息----------Details----------
This routine adjusts the interpolated species richness for sampling effort by incorporating an additional weighting factor. Therefor, it needs clusters
这个例程内插物种丰富度采样的努力,将更多的权重因子调整。为此,它需要聚类
值----------Value----------
This function returns a grid containing the adjusted species richness information.
这个函数返回一个网格,调整后的物种丰富度信息。
(作者)----------Author(s)----------
Maximilian Lange, Sven Lautenbach
参考文献----------References----------
Reassessing Neotropical angiosperm distribution patterns based on monographic data: a geometric interpolation approach. Biodivers Conserv, 19, 1523-1546.
实例----------Examples----------
##load data[#加载数据]
data(dataset.all.species)
data(dataset.landwater)
##create grid parameters[#创建网格参数。]
dimension <- getDimension(dataset.all.species, resolution=1)
shift <- getShift(dataset.all.species)
##create landwatermask[#创建landwatermask]
landwatermask.nocoast <- createLandwatermask(dataset.landwater,
dimension, shift, resolution=1)
##estimate species richness[#估计物种丰富度]
species.richness.weighted <- species.richness(dataset.all.species,
landwatermask.nocoast, distances=1:10, weight=0.5, dimension, shift, resolution=1,
upperbound=5, narrow.endemic=FALSE, narrow.endemic.limit=5,
all.species=1:20)
##prepare adjustment[#准备调整]
noninterpolatedgrid <- createNonInterpolatedGrid(dataset.all.species,
dimension, shift, resolution=1, all.species=-1)
clusterlimit <- 100
clusterlist <- searchClusters(species.richness.weighted,
dimension, shift, resolution=1, clusterlimit)
##adjust species richness[#调整物种丰富度]
species.richness.weighted.adjusted <- adjustment(species.richness.weighted,
noninterpolatedgrid, clusterlist)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|