找回密码
 注册
查看: 299|回复: 0

R语言 spatstat包 split.ppp()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 14:15:40 | 显示全部楼层 |阅读模式
split.ppp(spatstat)
split.ppp()所属R语言包:spatstat

                                        Divide Point Pattern into Sub-patterns
                                         分点模式到子模式

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Divides a point pattern into several sub-patterns, according to their marks, or according to any user-specified grouping.
划分成若干子模式的点模式,根据他们的标记,或根据用户指定的任何分组。


用法----------Usage----------


  ## S3 method for class 'ppp'
split(x, f = marks(x), drop=FALSE, un=NULL, ...)
  ## S3 replacement method for class 'ppp'
split(x, f = marks(x), drop=FALSE, un=missing(f), ...) <- value



参数----------Arguments----------

参数:x
A two-dimensional point pattern. An object of class "ppp".  
一个二维点模式。对象的类"ppp"。


参数:f
Data determining the grouping. Either a factor,  a pixel image with factor values, a tessellation, or the name of one of the columns of marks.  
分组的数据确定。无论是一个因素,像素的图像与系数的值,镶嵌,或标记的列的名称之一。


参数:drop
Logical. Determines whether empty groups will be deleted.  
逻辑。确定是否为空的组将被删除。


参数:un
Logical. Determines whether the resulting subpatterns will be unmarked (i.e. whether marks will be removed        from the points in each subpattern).   
逻辑。决定是否子模式将标记的(即在每个子模式是否标记将被删除从点)。


参数:...
Other arguments are ignored.  
其他参数将被忽略。


参数:value
List of point patterns.  
点模式的列表。


Details

详细信息----------Details----------

The function split.ppp divides up the points of the point pattern x into several sub-patterns according to the values of f. The result is a list of point patterns.
函数split.ppp将点的点模式x成若干子模式根据的值f。其结果是一个列表中的点图案。

The argument f may be
的参数f可能是

a factor, of length equal to the number of points in x. The levels of f determine the destination of each point in x. The ith point of x will be placed in the sub-pattern split.ppp(x)$l where l = f[i].
一个因素,长度相等的点的数量在x。 f的水平确定的目的地的每个点的x。 ix个点的子模式将被放置在split.ppp(x)$l其中l = f[i]。

a pixel image (object of class "im") with factor values. The pixel value of f at each point of x will be used as the classifying variable.
像素的图像(类的对象"im")因子值。的像素值f在每个点x将作为分级的变量。

a tessellation (object of class "tess"). Each point of x will be classified according to the tile of the tessellation into which it falls.
镶嵌(类的对象"tess")。每个点的x将根据它下降到镶嵌瓷砖的分类。

a character string, matching the name of one of the columns of marks, if marks(x) is a data frame. This column should be a factor.
一个字符串,匹配的列标记的名称之一,如果marks(x)是一个数据框。此栏应是一个重要因素。

If f is missing, then it will be determined by the marks of the point pattern. The pattern x can be either
f如果丢失,然后将确定的点模式的标志。的模式x可以是

a multitype point pattern (a marked point pattern whose marks vector is a factor). Then f is taken to be the marks vector. The effect is that the points of each type are separated into different point patterns.
一个多类型的点图案(标记点图案,其标记矢量是一个因素)。然后f的标志矢量。其效果是,每种类型的点被分离成不同的点图案。

a marked point pattern with a data frame of marks, containing at least one column that is a factor. The first such column will be used to determine the splitting factor f.
显着的点图案与一个数据框的标记,包含至少一列,这是一个因素。第一个这样的列将被用来确定分裂因子f。

Some of the sub-patterns created by the split may be empty. If drop=TRUE, then empty sub-patterns will be deleted from the list. If drop=FALSE then they are retained.
某些由分割创建的子模式可能是空的。如果drop=TRUE,然后空的子模式将被从列表中删除。如果drop=FALSE“然后他们被保留。

The argument un determines how to handle marks  in the case where x is a marked point pattern. If un=TRUE then the marks of the  points will be discarded when they are split into groups, while if un=FALSE then the marks will be retained.
参数un决定如何处理的情况下标记,其中x是一个显着的点模式。如果un=TRUE那么的点的标记将被丢弃时,他们分成不同的小组,而如果un=FALSE那么该商标将被保留。

If f and un are both missing, then the default is un=TRUE for multitype point patterns and un=FALSE for marked point patterns with a data frame of marks.
如果f和un都失踪,那么默认的是un=TRUE下的多点模式和un=FALSE一个数据框标记的标记点模式。

The result of split.ppp has class "splitppp" and can be plotted using plot.splitppp.
split.ppp类"splitppp"可以绘制使用plot.splitppp。

The assignment function split<-.ppp  updates the point pattern x so that it satisfies split(x, f, drop, un) = value. The argument value is expected to be a list of point patterns, one for each level of f. These point patterns are expected to be compatible with the type of data in the original pattern x.
分配功能split<-.ppp更新点模式x,所以它满足split(x, f, drop, un) = value的。的参数value预计将列表中的点模式,每个级别的f。预期这些点图案是兼容的数据类型中的原始图案x。

Splitting can also be undone by the function superimpose.
也可以分割百废待兴的功能superimpose。


值----------Value----------

The value of split.ppp is a list of point patterns. The components of the list are named by the levels of f. The list also has the class "splitppp".
split.ppp点模式的列表。组件列表中被命名为水平f。该列表也有类"splitppp"。

The assignment form split<-.ppp returns the updated point pattern x.
分配形式split<-.ppp返回更新后的点模式x。


(作者)----------Author(s)----------


Adrian Baddeley
<a href="mailto:Adrian.Baddeley@csiro.au">Adrian.Baddeley@csiro.au</a>
<a href="http://www.maths.uwa.edu.au/~adrian/">http://www.maths.uwa.edu.au/~adrian/</a>
and Rolf Turner
<a href="mailto:r.turner@auckland.ac.nz">r.turner@auckland.ac.nz</a>




参见----------See Also----------

cut.ppp, plot.splitppp, superimpose, im, tess, ppp.object
cut.ppp,plot.splitppp,superimpose,im,tess,ppp.object


实例----------Examples----------



# (1) Splitting by marks[(1)分离标记]

# Multitype point pattern: separate into types[多类型的点模式:单独分为不同的类型]
data(amacrine)
u <- split(amacrine)

# plot them[绘制出来]
plot(split(amacrine))

# the following are equivalent:[以下是等效的:]
amon <- split(amacrine)$on
amon <- unmark(amacrine[amacrine$marks == "on"])
   
# the following are equivalent:[以下是等效的:]
amon <- split(amacrine, un=FALSE)$on
amon <- amacrine[amacrine$marks == "on"]
   
# Scramble the locations of the 'on' cells[加扰的位置的“on”的单元]
u <- split(amacrine)
u$on <- runifpoint(amon$n, amon$window)
split(amacrine) <- u

# Point pattern with continuous marks[连续标记的点模式]
data(longleaf)

# cut the range of tree diameters into three intervals[削减范围内的树直径分为三个区间]
# using cut.ppp[使用cut.ppp]
long3 <- cut(longleaf, breaks=3)
# now split them[现在将它们分割]
long3split <- split(long3)

# (2) Splitting by a factor[(2)的一个因素的劈裂]

# Unmarked point pattern[未标记的点模式]
  data(swedishpines)
# cut &amp; split according to nearest neighbour distance[根据最近邻距离剪切和分割]
  f <- cut(nndist(swedishpines), 3)
  u <- split(swedishpines, f)

# (3) Splitting over a tessellation[(3)分割的一个Tessellation(曲面细分)]
   tes <- tess(xgrid=seq(0,96,length=5),ygrid=seq(0,100,length=5))
   v <- split(swedishpines, tes)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-6-17 03:14 , Processed in 0.025285 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表