rmhmodel.ppm(spatstat)
rmhmodel.ppm()所属R语言包:spatstat
Interpret Fitted Model for Metropolis-Hastings Simulation.
解释大都市黑斯廷斯的仿真模型拟合。
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Converts a fitted point process model into a format that can be used to simulate the model by the Metropolis-Hastings algorithm.
将一个装有点过程模型的格式,可以用来模拟模型的Metropolis-Hastings算法。
用法----------Usage----------
## S3 method for class 'ppm'
rmhmodel(model, win, ..., verbose=TRUE, project=TRUE,
control=rmhcontrol())
参数----------Arguments----------
参数:model
Fitted point process model (object of class "ppm").
合身点过程模型(对象类"ppm"“)。
参数:win
Optional. Window in which the simulations should be generated.
可选。窗口,在其中模拟应生成。
参数:...
Ignored.
忽略。
参数:verbose
Logical flag indicating whether to print progress reports while the model is being converted.
逻辑标志,指示是否要打印的进度报告,同时被转换的模型。
参数:project
Logical flag indicating what to do if the fitted model does not correspond to a valid point process. See Details.
逻辑标志,指示该怎么做,如果合适的模型不符合一个有效的点过程。查看详细信息。
参数:control
Parameters determining the iterative behaviour of the simulation algorithm. Passed to rmhcontrol.
参数确定的迭代算法的仿真行为。传递到rmhcontrol。
Details
详细信息----------Details----------
The generic function rmhmodel takes a description of a point process model in some format, and converts it into an object of class "rmhmodel" so that simulations of the model can be generated using the Metropolis-Hastings algorithm rmh.
通用功能rmhmodel某种格式的点过程模型的描述,并将其转换成一个类的对象"rmhmodel",使模拟的模型可以使用的Metropolis-Hastings算法生成rmh。
This function rmhmodel.ppm is the method for the class "ppm" of fitted point process models.
此功能rmhmodel.ppm类"ppm"装点过程模型的方法。
The argument model should be a fitted point process model (object of class "ppm") typically obtained from the model-fitting function ppm. This will be converted into an object of class "rmhmodel".
参数model应该是一个安装点过程模型(对象类"ppm"),通常从模型的拟合函数ppm。这将被转换成一个对象的类"rmhmodel"。
The optional argument win specifies the window in which the pattern is to be generated. If specified, it must be in a form which can be coerced to an object of class owin by as.owin.
可选参数win指定要生成模式的窗口中。如果指定的话,它必须是可以强制转换为一个对象类owinas.owin的形式。
Not all fitted point process models obtained from ppm can be simulated. We have not yet implemented simulation code for the LennardJones and OrdThresh models.
并非所有的拟合点的过程模型获得ppm可以模拟。我们还没有实现仿真代码LennardJones和OrdThresh模型。
It is also possible that a fitted point process model obtained from ppm may not correspond to a valid point process. For example a fitted model with the Strauss interpoint interaction may have any value of the interaction parameter gamma; however the Strauss process is not well-defined for gamma > 1 (Kelly and Ripley, 1976).
也有可能是一个装有点过程模型获得ppm可能不符合一个有效的点过程。例如,一个合适的模型StraussINTERPOINT互动可能没有任何价值的相互作用参数gamma但是施特劳斯的过程是不明确的,gamma > 1(凯利和Ripley,1976年) 。
The argument project determines what to do in such cases. If project=FALSE, a fatal error will occur. If project=TRUE, the fitted model parameters will be adjusted to the nearest values which do correspond to a valid point process. For example a Strauss process with gamma > 1 will be projected to a Strauss process with gamma = 1, equivalent to a Poisson process.
参数project在这种情况下,决定做什么。如果project=FALSE,一个致命的错误会发生。如果project=TRUE,拟合模型的参数将被调整至最接近的值对应一个有效的点过程。例如施特劳斯gamma > 1将被投影到施特劳斯过程gamma = 1,相当于一个泊松过程。
值----------Value----------
An object of class "rmhmodel", which is essentially a list of parameter values for the model.
类"rmhmodel",它的一个目的是基本上是一个为模型的参数值列表。
There is a print method for this class, which prints a sensible description of the model chosen.
有一个print这个类的方法,它会输出一个明智的描述所选择的模式。
(作者)----------Author(s)----------
Adrian Baddeley
<a href="mailto:Adrian.Baddeley@csiro.au">Adrian.Baddeley@csiro.au</a>
<a href="http://www.maths.uwa.edu.au/~adrian/">http://www.maths.uwa.edu.au/~adrian/</a>
and Rolf Turner
<a href="mailto:r.turner@auckland.ac.nz">r.turner@auckland.ac.nz</a>
参考文献----------References----------
Patterns (2nd ed.) Arnold, London.
Monte Carlo methods of inference for implicit statistical models. Journal of the Royal Statistical Society, series B 46, 193 – 212.
Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Computation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80. Pages 79–140.
On Strauss's model for clustering. Biometrika 63, 357–360.
参见----------See Also----------
rmhmodel, rmhmodel.list, rmhmodel.default, rmh, rmhcontrol, rmhstart, ppm, AreaInter, BadGey, DiggleGatesStibbard, DiggleGratton, Fiksel, Geyer, Hardcore, LennardJones, MultiStrauss, MultiStraussHard, PairPiece, Poisson, Softcore, Strauss, StraussHard, Triplets
rmhmodel,rmhmodel.list,rmhmodel.default,rmh,rmhcontrol,rmhstart,ppm,AreaInter,BadGey,DiggleGatesStibbard,DiggleGratton,Fiksel,Geyer,Hardcore,LennardJones,MultiStrauss,MultiStraussHard ,PairPiece,Poisson,Softcore,Strauss,StraussHard,Triplets
实例----------Examples----------
data(cells)
fit1 <- ppm(cells, ~1, Strauss(0.07))
mod1 <- rmhmodel(fit1)
fit2 <- ppm(cells, ~x, Geyer(0.07, 2))
mod2 <- rmhmodel(fit2)
fit3 <- ppm(cells, ~x, Hardcore(0.07))
mod3 <- rmhmodel(fit3)
# Then rmh(mod1), etc[然后RMH(MOD1),等]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|