interactionPval(SNPassoc)
interactionPval()所属R语言包:SNPassoc
Two-dimensional SNP analysis for association studies
二维的单核苷酸多态性的关联研究分析
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Perform a two-dimensional SNP analysis (interaction) for association studies with possible allowance for covariate
执行一个二维的SNP分析(互动)的关联研究可能的津贴协
用法----------Usage----------
interactionPval(formula, data, quantitative =
is.quantitative(formula, data), model = "codominant")
参数----------Arguments----------
参数:formula
a formula object. It might have either a continuous variable (quantitative traits) or a factor variable (case-control study) as the response on the left of the ~ operator and the terms corresponding to the covariates to be adjusted. A crude analysis is performed indicating ~1
一个公式对象。它可能有一个连续变量(数量性状)或一个因素变量(病例对照研究)作为~运算符和对应的条款进行调整的协变量的左侧上的响应。根据粗略的分析表明~1
参数:data
a required object of class 'setupSNP'.
所需的对象的类的setupSNP“。
参数:quantitative
logical value indicating whether the phenotype (those which is in the left of the operator ~ in 'formula' argument) is quantitative. The function 'is.quantitative' returns FALSE when the phenotype is a variable with two categories (i.e. indicating case-control status). Thus, it is not a required argument but it may be modified by the user.
逻辑值,该值指示是否是定量型(这是在运算符左侧的~在“公式”的说法)。的功能“is.quantitative的返回FALSE时,表型是一个变量有两大类(即指示的情况下控制状态)。因此,它是不必需的参数,但它可以由用户修改。
参数:model
a character string specifying the type of genetic model (mode of inheritance). This indicates how the genotypes should be collapsed. Possible value are "codominant", "dominant", "recessive", "overdominant" or "log-additive". The default is "codominant". Only the first words are required, e.g "co", "do", "re", "ov", "log"
一个字符串指定类型的遗传模型(模式的继承)。这表明如何倒塌的基因型应。可能的值是“显性”,“显性”,“隐性”,“超显性”或“log添加剂”。默认值是“显性”。只有第一个字是必需的,例如,“合作”,“做”,“重”,“OV”,“log”
Details
详细信息----------Details----------
The 'interactionPval' function calculates, for each pair of SNPs (i,j), the likelihood underling the null model L0, the likelihood under each of the single-SNP, L(i) and L(j), the likelihood under an additive SNP model La(i,j), and the likelihood under a full SNP model (including SNP-SNP interaction), Lf(i,j).
的“interactionPval功能计算,每双单核苷酸多态性(I,J),可能下属的的空模型L0,在每个单SNP,L(i)和L(J)的可能性,可能下一个添加剂SNP型号LA(I,J),和下一个完整的SNP模型(包括SNP,SNP互动),利丰(I,J)的可能性。
The upper triangle in matrix from this function contains the p values for the interaction (epistasis) log-likelihood ratio test, LRT, LRTij = -2 (log Lf(i,j) - log La(i,j))
上三角矩阵从这个函数中包含的相互作用(上位)的对数似然比检验,轻铁,LRTij p值= -2(登录LF(I,J) - logLA(I,J))
The diagonal contains the p values from LRT for the crude effect of each SNP, LRTii = -2 (log L(i) - log L0)
对角线包含每个SNP的粗效果,LRTii轻铁的p值= -2(logL(ⅰ) - logL0)
The lower triangle contains the p values from LRT comparing the two-SNP additive likelihood to the best of the single-SNP models, LRTji = -2 (log La(i,j) - log max(L(i),L(j)))
较低的三角形包含的p值比较,从LRT最好单SNP模型的两个单核苷酸多态性的添加剂的可能性,LRTji = -2(log的La(I,J) - log最大值(L(ⅰ),L(十)))
In all cases the models including the SNPs are adjusted by the covariates indicated in the 'formula' argument. This method is used either for quantitative traits and dicotomous variables (case-control studies).
在所有情况下的模型,包括单核苷酸多态性在“公式”的说法表示协变量调整。此方法使用,也可以数量性状和dicotomous的变量(病例对照研究)。
值----------Value----------
The 'interactionPval' function returns a matrix of class 'SNPinteraction' containing the p values corresponding to the different likelihood ratio tests above describe.
“interactionPval函数返回一个矩阵类的SNPinteraction的P值对应不同的似然比检验上述描述。
Methods defined for 'SNPinteraction' objects are provided for print and plot. The plot method uses 'image' to plot a grid of p values. The upper triangle contains the interaction (epistasis) p values from LRT. The content in the lower triangle is the p values from the LRT comparing the additive model with the best single model. The diagonal contains the main effects pvalues from LRT. The 'plot.SNPinteraction' function also allows the user to plot the SNPs sorted by genomic position and with the information about chromosomes as in the 'plotMissing' function.
为“SNPinteraction”对象中定义的方法提供打印和绘图。图的方法是使用“图像的绘制网格的p值。上三角包含的相互作用(上位)p值LRT。下三角中的内容是从LRT比较添加剂模型,与最好的单个模型的p值。对角线包含从LRT的主要影响pvalues的。的plot.SNPinteraction功能还允许用户绘制的排序条件为基因组的位置和与染色体有关下列内容的信息,作为在“plotMissing功能的单核苷酸多态性。
注意----------Note----------
two-dimensional SNP analysis on a dense grid can take a great deal of computer time and memory.
二维SNP分析可以在一个密集的网格需要大量的计算机时间和内存。
参考文献----------References----------
JR Gonzalez, L Armengol, X Sole, E Guino, JM Mercader, X Estivill, V Moreno. SNPassoc: an R package to perform whole genome association studies. Bioinformatics, 2007;23(5):654-5.
参见----------See Also----------
setupSNP
setupSNP
实例----------Examples----------
data(SNPs)
datSNP<-setupSNP(SNPs,6:40,sep="")
ansCod<-interactionPval(log(protein)~sex,datSNP)
print(ansCod)
plot(ansCod)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|