SiZer(SiZer)
SiZer()所属R语言包:SiZer
Calculate SiZer Map
计算SIZER图
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Calculates the SiZer map from a given set of X and Y variables.
从一个给定的一组X和Y变量计算SIZER图。
用法----------Usage----------
SiZer(x, y, h=NA, x.grid=NA, degree=NA, derv=1, grid.length=41)
参数----------Arguments----------
参数:x
data vector for the independent axis
独立轴矢量数据
参数:y
data vector for the dependent axis
依赖轴矢量数据
参数:h
An integer representing how many bandwidths should be considered, or vector of length 2 representing the upper and lower limits h should take, or a vector of length greater than two indicating which bandwidths to examine.
一个整数,代表被认为多少带宽,或向量,长度为2代表h应采取的上限和下限,或者一个向量的长度更大的比2表示检查的带宽。
参数:x.grid
An integer representing how many bins to use along the x-axis, or a vector of length 2 representing the upper and lower limits the x-axis should take, or a vector of length greater than two indicating which x-values the derivative should be evaluated at.
一个整数,代表使用沿着x轴,或一个矢量代表的x-轴应该采取的上限和下限,或比2表示的x值的衍生物应该是一个向量的长度更大的长度为2的多少箱评估。
参数:grid.length
The default length of the h.grid or x.grid if the length of either is not given.
默认长度为h.grid或x.grid要么是给定的,如果长度。
参数:derv
The order of derivative for which to make the SiZer map.
秩序衍生工具使SIZER的图。
参数:degree
The degree of the local weighted polynomial used to smooth the data. This must be greater than or equal to derv.
用于平滑的数据的局部加权多项式的程度。这必须是大于或等于derv。
Details
详细信息----------Details----------
SiZer stands for the Significant Zero crossings of the derivative. There are two dominate approaches in smoothing bivariate data: locally weighted regression or penalized splines. Both approaches require the use of a 'bandwidth' parameter that controls how much smoothing should be done. Unfortunately there is no uniformly best bandwidth selection procedure. SiZer (Chaudhuri and Marron, 1999) is a procedure that looks across a range of bandwidths and classifies the p-th derivative of the smoother into one of three states: significantly increasing (blue), possibly zero (purple), or significantly negative (red).
SIZER代表了显着的零交叉点的导数。二元数据:局部加权回归或惩罚样条平滑有两个占主导地位的方法。这两种方法都需要使用“带宽”参数,控制多少平滑应该做的。不幸的是,没有统一的最佳选择带宽程序。 SIZER(Chaudhuri和马伦,1999年)是一种程序,看起来横跨带宽的范围内,并分类成三种状态之一的第p个衍生物的平滑:显著增加(蓝色),可能为零(紫色),或显著负(红色)。
值----------Value----------
Returns an SiZer object which has the following components: <table summary="R valueblock"> <tr valign="top"><td>x.grid</td> <td> Vector of x-values at which the derivative was evaluated.</td></tr> <tr valign="top"><td>h.grid</td> <td> Vector of bandwidth values for which a smoothing function was calculated.</td></tr> <tr valign="top"><td>slopes</td> <td> Matrix of what category a particular x-value and bandwidth falls into (Increasing=1, Possibly Zero=0, Decreasing=-1, Not Enough Data=2).</td></tr> </table>
返回一个的SIZER对象具有以下组件:<table summary="R valueblock"> <tr valign="top"> <TD>x.grid </ TD> <TD>向量的x值在其中衍生性进行了评估。</ TD> </ TR> <tr valign="top"> <TD>h.grid </ TD> <TD>向量的带宽值的平滑函数的计算结果。</ TD > </ TR> <tr valign="top"> <TD> slopes</ TD> <TD>矩阵的哪一类特定的x值和带宽分为(增加= 1,可能是零= 0 ,减少= -1,没有足够的数据,= 2)。</ TD> </ TR> </ TABLE>
(作者)----------Author(s)----------
Derek Sonderegger
参考文献----------References----------
Chaudhuri, P., and J. S. Marron. 1999. SiZer for exploration of structures in curves. Journal of the American Statistical Association 94:807-823.
Hannig, J., and J. S. Marron. 2006. Advanced distribution theory for SiZer. Journal of the American Statistical Association 101:484-499.
Sonderegger, D.L., Wang, H., Clements, W.H., and Noon, B.R. 2009. Using SiZer to detect thresholds in ecological data. Frontiers in Ecology and the Environment 7:190-195.
参见----------See Also----------
plot.SiZer, locally.weighted.polynomial
plot.SiZer,locally.weighted.polynomial
实例----------Examples----------
data('Arkansas')
x <- Arkansas$year
y <- Arkansas$sqrt.mayflies
plot(x,y)
# Calculate the SiZer map for the first derivative[计算的一阶导数的图为SIZER]
SiZer.1 <- SiZer(x, y, h=c(.5,10), degree=1, derv=1)
plot(SiZer.1)
# Calculate the SiZer map for the second derivative[计算SIZER图的二阶导数]
SiZer.2 <- SiZer(x, y, h=c(.5,10), degree=2, derv=2);
plot(SiZer.2)
# By setting the grid.length larger, we get a more detailed SiZer[通过设置grid.length大,我们获得更详细的SIZER]
# map but it takes longer to compute. [图,但它需要更长的时间来计算。]
#[]
# SiZer.3 <- SiZer(x, y, h=c(.5,10), grid.length=100, degree=1, derv=1)[SiZer.3 < - SIZER(的x,y,H = C(.5,10),grid.length = 100度= 1,柴油= 1)]
# plot(SiZer.3)[图(SiZer.3)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|