找回密码
 注册
查看: 282|回复: 0

R语言 simex包 simex()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 02:40:20 | 显示全部楼层 |阅读模式
simex(simex)
simex()所属R语言包:simex

                                        Measurement error in models using SIMEX
                                         测量误差模型中使用SIMEX

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Implementation of the SIMEX algorithm for measurement error models according
的SIMEX测量误差模型算法的实现


用法----------Usage----------


simex(model, SIMEXvariable, measurement.error, lambda = c(0.5, 1, 1.5, 2),
  B = 100, fitting.method = "quadratic", jackknife.estimation = "quadratic",
  asymptotic = TRUE)

## S3 method for class 'simex':
print(x, digits = max(3, getOption("digits") - 3), ...)
## S3 method for class 'simex':
summary(object,...)
## S3 method for class 'simex':
plot(x, xlab = expression((1 + lambda)), ylab = colnames(b[, -1]),
  ask = FALSE, show = rep(TRUE, NCOL(b) - 1), ...)
## S3 method for class 'simex':
predict(object, newdata, ...)

refit(object, ...)
## S3 method for class 'simex':
refit(object, fitting.method = "quadratic",
  jackknife.estimation = "quadratic", asymptotic = TRUE, ...)



参数----------Arguments----------

参数:model
the naive model
天真的模型


参数:SIMEXvariable
character or vector of characters containing the names of the variables with measurement error
含有与测量误差的变量的名称的字符的字符或矢量


参数:measurement.error
vector of standard deviations of the known measurement errors
向量的已知的测量误差的标准偏差的


参数:lambda
vector of lambdas for which the simulation step should be done (without 0)
矢量应该做的仿真步长的lambda表达式(不加0)


参数:B
number of iterations for each lambda
每个lambda的迭代次数


参数:fitting.method
fitting method linear, quadratic, nonlinear are implemented. (first 4 letters are enough)
拟合方法linear,quadratic,nonlinear的实施。 (第4个字母是足够的)


参数:jackknife.estimation
specifying the extrapolation method for jackknife variance estimation. Can be set to FALSE if it should not be performed
指定的刀切法方差估计,外推法。如果它不应该被执行,可以设置为FALSE


参数:asymptotic
logical, indicating if asymptotic variance estimation should be done, in the naive model the option x = TRUE has to be set
逻辑,如果渐近方差估计应该做的,天真的模型,设置选项“x = TRUE有


参数:x
object of class 'simex'
对象类的新加坡国际金融交易所“


参数:digits
number of digits to be printed
要打印的数字位数


参数:object
object of class 'simex'
对象类的新加坡国际金融交易所“


参数:xlab
optional name for the X-Axis
X-轴的名称(可选)


参数:ylab
vector containing the names for the Y-Axis
向量含有的Y-轴的名称


参数:ask
logical. If TRUE, the user is asked for input, before a new figure is drawn
逻辑。如果TRUE,用户被要求输入,绘制在一个新的数字


参数:show
vector of logicals indicating for wich variables a plot should be produced
向量,逻辑值至极的变量,一个图,应


参数:newdata
optionally, a data frame in which to look for variables with which to predict. If omitted, the fitted linear predictors are used
可选的数据框中寻找变量,用以预测。如果省略该参数,拟合的线性预测


参数:...
arguments passed to other functions
参数传递给其他函数


Details

详细信息----------Details----------

Nonlinear is implemented as described in Cook and Stefanski, but is numerically instable. It is not advisable to use this feature. If a nonlinear extrapolation is desired please use the refit() method.
非线性是在库克和斯蒂范斯基实施,但在数值上的不稳定。要使用此功能,这是不可取的。如果所需的非线性外推法,请使用refit()方法。

Asymptotic is only implemented for naive models of class lm or glm.
渐近只实现类lm或glm天真的模型。

refit() refits the object with a different extrapolation function.
refit()改装一个不同的外推功能的对象。


值----------Value----------

An object of class 'simex' which contains: <table summary="R valueblock"> <tr valign="top"><td>coefficients</td> <td> the corrected coefficients of the SIMEX model,</td></tr> <tr valign="top"><td>SIMEX.estimates</td> <td> the estimates for every lambda,</td></tr> <tr valign="top"><td>model</td> <td> the naive model,</td></tr> <tr valign="top"><td>measurement.error</td> <td> the known error standard deviations,</td></tr> <tr valign="top"><td>B</td> <td> the number of iterations,</td></tr> <tr valign="top"><td>extrapolation</td> <td> the model object of the extrapolation step,</td></tr> <tr valign="top"><td>fitting.method</td> <td> the fitting method used in the extrapolation step,</td></tr> <tr valign="top"><td>residuals</td> <td> the residuals,</td></tr> <tr valign="top"><td>fitted.values</td> <td> the fitted values,</td></tr> <tr valign="top"><td>call</td> <td> the function call,</td></tr> <tr valign="top"><td>variance.jackknife</td> <td> the jackknife variance estimate,</td></tr> <tr valign="top"><td>extrapolation.variance</td> <td> the model object of the variance extrapolation,</td></tr> <tr valign="top"><td>variance.jackknife.lambda</td> <td> the data set for the extrapolation,</td></tr> <tr valign="top"><td>variance.asymptotic</td> <td> the asymptotic variance estimates,</td></tr> <tr valign="top"><td>theta</td> <td> the estimates for every B and lambda,</td></tr> </table> ...
类的新加坡国际金融交易所“,其中包含的对象:表summary="R valueblock"> <tr valign="top"> <TD> coefficients </ TD> <TD>的交易模型的修正系数, </ TD> </ TR> <tr valign="top"> <TD> SIMEX.estimates</ TD> <TD>每拉姆达的估计,</ TD> </ TR> <TR VALIGN =“顶“<TD> model </ TD> <TD>天真的模型,</ TD> </ TR> <tr valign="top"> <TD> measurement.error </ TD> <TD>已知错误的标准偏差,</ TD> </ TR> <tr valign="top"> <TD>B </ TD> <TD>的迭代次数,</ TD> < / TR> <tr valign="top"> <TD> extrapolation </ TD> <TD>模型对象外推步骤,</ TD> </ TR> <tr valign="top"> <TD> fitting.method </ TD> <TD>的拟合方法用于外推步骤,</ TD> </ TR> <tr valign="top"> <TD>residuals</ TD> <TD>的残差,</ TD> </ TR> <tr valign="top"> <TD>fitted.values </ TD> <TD>的拟合值,</ TD> </ TR > <tr valign="top"> <TD> call </ TD> <TD>的函数调用,</ TD> </ TR> <tr valign="top"> <TD><X > </ TD> <TD>刀切法方差估计,</ TD> </ TR> <tr valign="top"> <TD>variance.jackknife </ TD> <TD>的模型对象方差推断,</ TD> </ TR> <tr valign="top"> <TD>extrapolation.variance </ TD> <TD>的数据外推,</ TD> </ TR> < TR VALIGN =“”> <TD>variance.jackknife.lambda </ TD> <TD>渐近方差的估计,</ TD> </ TR> <tr valign="top"> <TD>variance.asymptotic </ TD> <TD>估计每个B和λ</ TD> </ TR> </ TABLE> ...


(作者)----------Author(s)----------


Wolfgang Lederer,<a href="mailto:wolfgang.lederer@googlemail.com">wolfgang.lederer@googlemail.com</a>



参考文献----------References----------

Cook, J.R. and Stefanski, L.A. (1994) Simulation-extrapolation estimation in parametric measurement error models. Journal of American Statistical Association, 89, 1314 &ndash; 1328
Carroll, R.J., K眉chenhoff, H., Lombard, F. and Stefanski L.A. (1996) Asymptotics for the SIMEX estimator in nonlinear measurement error models. Journal of the American Statistical Association, 91, 242 &ndash; 250
Carrol, R.J., Ruppert, D., Stefanski, L.A. and Crainiceanu, C. (2006). Measurement error in nonlinear models: A modern perspective., Second Edition. London: Chapman and Hall.
Lederer, W. and K眉chenhoff, H. (2006) A short introduction to the SIMEX and MCSIMEX. R News, 6(4), 26&ndash;31


参见----------See Also----------

mcsimex for discrete data with misclassification,
mcsimex离散数据分类错误,


实例----------Examples----------


# to test nonlinear extrapolation[测试非线性外推]
#set.seed(3)[set.seed(3)]
x <- rnorm(200, 0, 100)
u <- rnorm(200, 0, 25)
w <- x + u
y <- x + rnorm(200, 0, 9)
true.model <- lm(y ~ x)
naive.model <- lm(y ~ w, x = TRUE)
simex.model <- simex(model = naive.model, SIMEXvariable = "w",
    measurement.error = 25)
plot(x, y)
abline(true.model, col = "darkblue")
abline(simex.model, col = "red")
abline(naive.model, col = "green")
legend(min(x), max(y), legend = c("True Model", "SIMEX model", "Naive Model"),
    col = c("darkblue", "red", "green"), lty = 1)

plot(simex.model, mfrow = c(2, 2))

simex.model2 <-  refit(simex.model, "line")
plot(simex.model2, mfrow = c(2, 2))

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-5-24 07:28 , Processed in 0.025193 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表