SGL(SGL)
SGL()所属R语言包:SGL
Fit a GLM with a combination of lasso and group lasso regularization
适合一个GLM的套索,套索正规化组相结合
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Fit a regularized generalized linear model via penalized maximum likelihood. The model is fit for a path of values of the penalty parameter. Fits linear, logistic and Cox models.
适合正规化广义线性模型通过惩罚最大似然。该模型是适合的惩罚参数的值的路径。适用于线性,MF和Cox模型。
用法----------Usage----------
SGL(data, index, type = "linear", maxit = 1000, thresh = 0.001, min.frac = 0.1, nlam = 20, gamma = 0.8, standardize = TRUE, verbose = FALSE, step = 1, reset = 10, alpha = 0.95, lambdas = NULL)
参数----------Arguments----------
参数:data
For type="linear" should be a list with $x$ an input matrix of dimension n-obs by p-vars, and $y$ a length $n$ response vector. For type="logit" should be a list with $x$, an input matrix, as before, and $y$ a length $n$ binary response vector. For type="cox" should be a list with x as before, time, an n-vector corresponding to failure/censor times, and status, an n-vector indicating failure (1) or censoring (0).
对于type="linear"应该是一个列表,$ X $输入矩阵的维N-OBS对增值分销商,和$ Y $的长度为$ n $响应向量。对于type="logit"应该是一个列表$ X $,输入矩阵,和以前一样,和$ y $的长度$ n $的二进制响应向量。对于type="cox"应与x是一个列表,像以前一样,time,对应于故障的n矢量/检查员倍,和status,一个n矢量表示失败(1)或设限(0)。
参数:index
A p-vector indicating group membership of each covariate
一个P-矢量表示组成员的每个协
参数:type
model type: one of ("linear","logit", "cox")
(“线性”,“的罗吉特”,“考克斯”)模型类型:
参数:maxit
Maximum number of iterations to convergence
最大迭代次数收敛
参数:thresh
Convergence threshold for change in beta
收敛阈值处于测试阶段的变化
参数:min.frac
The minimum value of the penalty parameter, as a fraction of the maximum value
罚参数的最小值,作为最大值的一小部分
参数:nlam
Number of lambda to use in the regularization path
号码的lambda使用的规范化路径
参数:gamma
Fitting parameter used for tuning backtracking (between 0 and 1)
拟合参数用于调整回溯(0和1之间)
参数:standardize
Logical flag for variable standardization prior to fitting the model.
逻辑标志变量标准化拟合模型之前。
参数:verbose
Logical flag for whether or not step number will be output
逻辑标志是否步数,将输出
参数:step
Fitting parameter used for inital backtracking step size (between 0 and 1)
拟合参数用于>初始回溯步长(在0和1之间)
参数:reset
Fitting parameter used for taking advantage of local strong convexity in nesterov momentum (number of iterations before momentum term is reset)
拟合参数用于利用当地的强凸涅斯捷罗夫势头(迭代次数动量项是复位前)
参数:alpha
The mixing parameter. alpha = 1 is the lasso penalty. alpha = 0 is the group lasso penalty.
混合参数。 alpha= 1是的套索处罚。 alpha= 0是组套索惩罚的。
参数:lambdas
A user specified sequence of lambda values for fitting. We recommend leaving this NULL and letting SGL self-select values
用户自定义的装配序列的λ值。我们建议保留这个NULL,让SGL自我选择的值
Details
详细信息----------Details----------
The sequence of models along the regularization path is fit by accelerated generalized gradient descent.
序列正规化路径的模型适合的广义梯度下降加速。
值----------Value----------
An object with S3 class "SGL"
对象与S3类"SGL"
参数:beta
A p by nlam matrix, giving the penalized MLEs for the nlam different models, where the index corresponds to the penalty parameter lambda
的pnlam矩阵,给予惩罚最大似然估计的nlam不同的车型,该指数对应的惩罚参数lambda的
参数:lambdas
The actual sequence of lambda values used (penalty parameter)
lambda实际的序列值使用(刑罚参数)
参数:type
Response type (linear/logic/cox)
响应类型(线性/逻辑/ COX)
参数:intercept
For some model types, an intercept is fit
对于某些类型的模型,拦截是合适的
参数:X.transform
A list used in predict which gives the empirical mean and variance of the x matrix used to build the model
列表predict给出了实证的X矩阵用于建立模型的均值和方差
参数:lambdas
A user specified sequence of lambda values for fitting. We recommend leaving this NULL and letting SGL self-select values
用户自定义的装配序列的λ值。我们建议保留这个NULL,让SGL自我选择的值
(作者)----------Author(s)----------
Noah Simon, Jerry Friedman, Trevor Hastie, and Rob Tibshirani<br>
Maintainer: Noah Simon <a href="mailto:nsimon@stanford.edu">nsimon@stanford.edu</a>
参考文献----------References----------
A Sparse-Group Lasso, <br> http://www-stat.stanford.edu/~nsimon/SGL.pdf
参见----------See Also----------
cv.SGL
cv.SGL
实例----------Examples----------
n = 50; p = 100; size.groups = 10
index <- ceiling(1:p / size.groups)
X = matrix(rnorm(n * p), ncol = p, nrow = n)
beta = (-2:2)
y = X[,1:5] %*% beta + 0.1*rnorm(n)
data = list(x = X, y = y)
fit = SGL(data, index, type = "linear")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|