sic(sft)
sic()所属R语言包:sft
Calculate the Survivor Interaction Contrast
计算幸存者互动对比度
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Function to calculate survivor interaction contrast and associated measures.
函数来计算幸存者互动的对比度和相关措施。
用法----------Usage----------
sic(HH, HL, LH, LL, sictest="ks", domtest="ks")
参数----------Arguments----------
参数:HH
Response times from the High–High condition.
响应时间从高 - 高的条件。
参数:HL
Response times from the High–Low condition.
响应时间从高至低的状况。
参数:LH
Response times from the Low–High condition.
响应时间从低到高的状态。
参数:LL
Response times from the Low–Low condition.
从低 - 低状态下的响应时间。
参数:sictest
Which type of hypothesis test to use for SIC form.
哪型假设测试使用SIC形式。
参数:domtest
Which type of hypothesis test to use for testing stochastic dominance relations, either as series of KS tests (\"ks\") or the dominance test based on Dirichlet process priors (\"dp\"). DP not yet implemented.
哪种类型的假设检验用于测试的随机占优关系,无论是作为系列的KS测试(\“KS \”)或占主导地位试验的基础上Dirichlet过程的先验(\ DP \“)。 DP尚未实现。
Details
详细信息----------Details----------
SIC(t) = (S_LL - S_LH) - (S_HL - S_HH)
SIC(T)=(S_LL - S_LH) - (S_HL - S_HH)
This function calculates the Survivor Interaction Contrast (SIC; Townsend & Nozawa, 1995). The SIC indicates the architecture and stopping-rule of the underlying information processing system. An entirely positive SIC indicates parallel first-terminating processing. An entirely negative SIC indicates parallel exhaustive processing. An SIC that is always zero indicates serial first-terminating processing. An SIC that is first positive then negative indicates either serial exhaustive or coactive processing. To distinguish between these two possibilities, an additional test of the mean interaction contrast (MIC) is used; coactive processing leads to a positive MIC while serial processing leads to an MIC of zero.
此函数计算的幸存者互动对比度(SIC汤森野泽,1995年)。 SIC的指示的基础的信息处理系统的体系结构和停止规则。完全积极的SIC表示平行的第一个终止处理。一个表示完全负SIC,平行详尽的处理。 SIC,始终是零,表示序列的第一个终止处理。 SIC首先是正的,那么负,表示有详尽无遗,或者共同作用的串行处理。为了区分这两种可能性,一个额外的测试的平均相互作用对比度(MIC),用于共同作用的处理导致了积极的MIC,而串行处理导致MIC为零。
For the SIC function to distinguish among the processing types, the salience manipulation on each channel must selectively influence its respective channel (although see Eidels, Houpt, Altieri, Pei & Townsend, 2010 for SIC prediction from interactive parallel models). Although the selective influence assumption cannot be directly tested, one implication is that the distribution the HH response times stochastically dominates the HL and LH distributions which each in turn stochastically dominate the LL response time distribution. This implication is automatically tested in this function. The KS dominance test uses eight two-sample Kolmogorov-Smirnov tests: HH < HL, HH < LH, HL < LL, LH < LL should be significant while HH > HL, HH > LH, HL > LL, LH > LL should not. The DP uses four tests to determine which relation has the highest Bayes factor assuming a Dirichlet process prior for each of (HH, HL), (HH, LH), (HL, LL) and (LH, LL). See Heathcote, Brown, Wagenmakers & Eidels, 2010, for more details.
的的SIC功能的处理类型来区分,每个通道上的显着性操作必须有选择地影响其各自的通道(虽然看到Eidels的,Houpt,阿尔铁里,裴汤森,2010年交互式并行模型的的SIC预测从)。虽然不能直接测试的选择性影响的假设,其中蕴涵的分布的HH的响应时间随机占主导地位的HL和LH分布的每个依次随机占主导地位的的LL响应时间分布。这暗示此功能自动测试。 KS的优势测试使用8两样本Kolmogorov-Smirnov测试:HH <HL,HH <LH,HL <LL,LH <LL应该是显着的,而HH HL,HH> LH,HL> LL,LH> LL不应该的。 DP使用四个测试,以确定该关系具有最高的贝叶斯因子假设Dirichlet过程之前为每个(HH,HL),(HH,LH),(HL,LL)和(LH,LL)。希思科特,布朗,Wagenmakers和Eidels 2010年,更多的细节。
This function also performs a statistical analysis to determine whether the positive and negative parts of the SIC are significantly different from zero. Currently the only statistical test is based on the generalization of the two-sample Kolmogorov-Smirnov test described in Houpt & Townsend, 2010. This test performs two separate null-hypothesis tests: One test for whether the largest positive value of the SIC is significantly different from zero and one test for whether the largest negative value is significantly different from zero.
此功能也执行的统计分析,以确定是否SIC的正和负的部分的显着不同于零。目前唯一的统计测试是基于两样本Kolmogorov-Smirnov测试中描述的Houpt 2010年汤森上的推广。此测试执行两个独立的零假设测试:测试最大正值的SIC是否显着异于零,最大负值是否是显着不同,从零和一个测试。
值----------Value----------
参数:SIC
An object of class stepfun representing the SIC.
对象代表SIC类stepfun。
参数:Dominance
A logical indicating whether the SIC passed the tests of stochastic dominance implied by selective influence.
一个逻辑SIC是否通过测试的随机占优暗示的选择性的影响。
参数:Dvals
A Matrix containing the values of the test statistic and the associated p-values.
一个矩阵包含的值的检验统计量和相关的p-值。
参数:MIC
Results of an adjusted rank transform test of the mean interaction contrast.
调整后的职级变换的平均互动对比测试。
参数:N
The scaling factor used for the KS test of the SIC form.
KS检验用于的SIC形式的比例因子。
(作者)----------Author(s)----------
Joe Houpt <jhoupt@indiana.edu>
参考文献----------References----------
参见----------See Also----------
stepfun sicGroup micTest
stepfunsicGroupmicTest
实例----------Examples----------
T1.h <- rexp(50, .2)
T1.l <- rexp(50, .1)
T2.h <- rexp(50, .21)
T2.l <- rexp(50, .11)
SerialAND.hh <- T1.h + T2.h
SerialAND.hl <- T1.h + T2.l
SerialAND.lh <- T1.l + T2.h
SerialAND.ll <- T1.l + T2.l
SerialAND.sic <- sic(HH=SerialAND.hh, HL=SerialAND.hl, LH=SerialAND.lh, LL=SerialAND.ll)
print(SerialAND.sic$Dvals)
plot(SerialAND.sic$SIC, do.p=FALSE, ylim=c(-1,1))
p1 <- runif(200) < .3
SerialOR.hh <- p1[1:50] * T1.h + (1-p1[1:50] )*T2.h
SerialOR.hl <- p1[51:100] * T1.h + (1-p1[51:100] )*T2.l
SerialOR.lh <- p1[101:150] * T1.l + (1-p1[101:150])*T2.h
SerialOR.ll <- p1[151:200] * T1.l + (1-p1[151:200])*T2.l
SerialOR.sic <- sic(HH=SerialOR.hh, HL=SerialOR.hl, LH=SerialOR.lh, LL=SerialOR.ll)
print(SerialOR.sic$Dvals)
plot(SerialOR.sic$SIC, do.p=FALSE, ylim=c(-1,1))
ParallelAND.hh <- pmax(T1.h, T2.h)
ParallelAND.hl <- pmax(T1.h, T2.l)
ParallelAND.lh <- pmax(T1.l, T2.h)
ParallelAND.ll <- pmax(T1.l, T2.l)
ParallelAND.sic <- sic(HH=ParallelAND.hh, HL=ParallelAND.hl, LH=ParallelAND.lh, LL=ParallelAND.ll)
print(ParallelAND.sic$Dvals)
plot(ParallelAND.sic$SIC, do.p=FALSE, ylim=c(-1,1))
ParallelOR.hh <- pmin(T1.h, T2.h)
ParallelOR.hl <- pmin(T1.h, T2.l)
ParallelOR.lh <- pmin(T1.l, T2.h)
ParallelOR.ll <- pmin(T1.l, T2.l)
ParallelOR.sic <- sic(HH=ParallelOR.hh, HL=ParallelOR.hl, LH=ParallelOR.lh, LL=ParallelOR.ll)
print(ParallelOR.sic$Dvals)
plot(ParallelOR.sic$SIC, do.p=FALSE, ylim=c(-1,1))
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|