ConsensusClusterPlus(ConsensusClusterPlus)
ConsensusClusterPlus()所属R语言包:ConsensusClusterPlus
run ConsensusClusterPlus
运行ConsensusClusterPlus
译者:生物统计家园网 机器人LoveR
描述----------Description----------
ConsensusClusterPlus function for determing cluster number and class membership by stability evidence. calcICL function for calculating cluster-consensus and item-consensus.
ConsensusClusterPlus功能聚类稳定的证据的数量和类成员的决定。 calcICL函数计算聚类的共识和项目达成共识。
用法----------Usage----------
ConsensusClusterPlus(
d=NULL, maxK = 3, reps=10, pItem=0.8, pFeature=1, clusterAlg="hc",title="untitled_consensus_cluster",
innerLinkage="average", finalLinkage="average", distance="pearson", ml=NULL,
tmyPal=NULL,seed=NULL,plot=NULL,writeTable=FALSE,weightsItem=NULL,weightsFeature=NULL,verbose=F)
calcICL(res,title="untitled_consensus_cluster",plot=NULL,writeTable=FALSE)
参数----------Arguments----------
参数:d
matrix where columns=items/samples and rows are features. For example, a gene expression matrix of genes in rows and microarrays in columns. OR ExpressionSet object.
矩阵列=项目/样品和行的功能。例如,基因表达矩阵的行和列中的微阵列的基因。或ExpressionSet对象。
参数:maxK
integer value. maximum cluster number to evaluate.
整数值。最大的聚类数量来评价。
参数:reps
integer value. number of subsamples.
整数值。的子样本。
参数:pItem
numerical value. proportion of items to sample.
数值。项目样本的比例。
参数:pFeature
numerical value. proportion of features to sample.
数值。特征样本的比例。
参数:clusterAlg
character value. cluster algorithm. "hc" heirarchical (hclust) or "km" for k-means. See Note.
字符值。聚类算法。 “HC”heirarchical(hclust)或“公里”的k-means。见注。
参数:title
character value for output directory. Directory is created only if plot is not NULL or writeTable is TRUE. This title can be an abosulte or relative path.
输出目录中的字符值。目录创建只有图是不是NULL或writeTable为TRUE。这个称号是abosulte或相对路径。
参数:innerLinkage
heirarchical linkage method for subsampling.
二次抽样heirarchical联动的方法。
参数:finalLinkage
heirarchical linkage method for consensus matrix.
共识矩阵heirarchical联动的方法。
参数:distance
character value. sample distance measures: "pearson","spearman", or "euclidean".
字符值。样品距离措施“培”,“矛”,或“欧几里德”。
参数:ml
optional. prior result, if supplied then only do graphics and tables.
可选的。之前的结果,如果有提供的话,那么只有做图形和表格。
参数:tmyPal
optional character vector of colors for consensus matrix
可选颜色共识矩阵特征向量
参数:seed
optional numerical value. sets random seed for reproducible results.
可选的数值。设置重复性的结果随机种子。
参数:plot
character value. NULL - print to screen, 'pdf', 'png'.
字符值。空 - 打印到屏幕上,“PDF”,“PNG”。
参数:writeTable
logical value. TRUE - write ouput and log to csv.
逻辑值。真 - 写输出中,并记录到CSV。
参数:weightsItem
optional numerical vector. weights to be used for sampling items.
可选的数值向量。用于采样项目的权重。
参数:weightsFeature
optional numerical vector. weights to be used for sampling features.
可选的数值向量。采样功能可用于重量。
参数:res
result of consensusClusterPlus.
导致的consensusClusterPlus。
参数:verbose
boolean. If TRUE, print messages to the screen to indicate progress. This is useful for large datasets.
布尔值。如果是TRUE,消息打印到屏幕上显示进度。这是有用的大型数据集。
Details
详情----------Details----------
ConsensusClusterPlus implements the Consensus Clustering algorithm of Monti, et al (2003) and extends this method with new functionality and visualizations. Its utility is to provide quantitative stability evidence for determing a cluster count and cluster membership in an unsupervised analysis.
ConsensusClusterPlus实现蒙蒂等人(2003)的共识和聚类分析算法和扩展新的功能和可视化的方法。它的效用是提供定量测定聚类计数和聚类成员在无监督分析稳定的证据。
ConsensusClusterPlus takes a numerical data matrix of items as columns and rows as features. This function subsamples this matrix according to pItem, pFeature, weightsItem, and weightsFeature, and clusters the data into 2 to maxK clusters by clusterArg clusteringAlgorithm. Agglomerative heirarchical (hclust) and kmeans clustering are supported by an option see above. For users wishing to use a different clustering algorithm for which many are available in R, one can supply their own clustering algorithm as a simple programming hook - see the second commented-out example that uses divisive heirarchical clustering.
ConsensusClusterPlus需要数值数据矩阵的列和行为特征的项目。此功能根据pItem,pFeature,weightsItem,weightsFeature和聚类到2 maxK聚类clusterArg clusteringAlgorithm的数据的矩阵子样本。支持选项,见上面“凝聚heirarchical(hclust)和KMEANS聚类。对于用户希望使用一个不同的聚类算法,其中许多是提供研发,可以提供一个简单的编程钩子自己的聚类算法 - 见第二注释掉的例子,使用分裂heirarchical聚类。
For a detailed description of usage, output and images, see the vignette by: openVignette().
如需使用,输出和图像的详细描述,看到的小插曲:openVignette()。
值----------Value----------
ConsensusClusterPlus returns a list of length maxK. Each element is a list containing consensusMatrix (numerical matrix), consensusTree (hclust), consensusClass (consensus class asssignments). ConsensusClusterPlus also produces images.
ConsensusClusterPlus返回长度maxK的列表。每个元素是列表含有consensusMatrix(数字矩阵),consensusTree(hclust),consensusClass(共识级asssignments)。 ConsensusClusterPlus也产生图像。
calcICL returns a list of two elements clusterConsensus and itemConsensus corresponding to cluster-consensus and item-consensus. See Monti, et al (2003) for formulas.
calcICL返回两个的元素clusterConsensus和相应的聚类共识及项目的共识itemConsensus的列表。见公式蒙蒂等人(2003)。
作者(S)----------Author(s)----------
Matt Wilkerson mwilkers@med.unc.edu
参考文献----------References----------
A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data. Machine Learning, 52, 91-118.
举例----------Examples----------
## obtain gene expression data[#获得的基因表达数据]
library(Biobase)
data(geneData)
d=geneData
#median center genes[中位数为中心的基因]
d = sweep(d,1, apply(d,1,median))
## run consensus cluster[#运行的共识聚类]
rcc = ConsensusClusterPlus(d,maxK=4,reps=100,pItem=0.8,pFeature=1,title="example")
## ICL[#ICL的]
resICL = calcICL(rcc,title="example")
##example of programming hook for clusterAlg:[#编程钩clusterAlg例如:]
#library(cluster)[库(聚类)]
#dianaHook = function(this_dist,k){[dianaHook =功能(this_dist,K){]
#tmp = diana(this_dist,diss=TRUE)[TMP =戴安娜(this_dist,DISS = TRUE)]
#assignment = cutree(tmp,k)[分配= cutree(TMP,K)]
#return(assignment) [返回(转让)]
#}[}]
#ConsensusClusterPlus(d,maxK=6,reps=25,pItem=0.8,pFeature=1,title="example",plot="png",clusterAlg="dianaHook")[]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|