Planarplot(CMA)
Planarplot()所属R语言包:CMA
Visualize Separability of different classes
可视化可分不同类
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Given two variables, the methods trains a classifier (argument classifier) based on these two variables and plots the resulting class regions, learning- and test observations in the plane.
鉴于这两个变量,方法训练一个分类器(参数classifier)这两个变量和图形类区域基础上,学习和在飞机上的试验观测。
Appropriate variables are usually found by GeneSelection.
通常是由GeneSelection适当的变数。
For S4 method information, s. Planarplot-methods.
S4的方法信息。 Planarplot-methods。
用法----------Usage----------
Planarplot(X, y, f, learnind, predind, classifier, gridsize = 100, ...)
参数----------Arguments----------
参数:X
Gene expression data. Can be one of the following:
基因表达数据。可以是下列之一:
A matrix. Rows correspond to observations, columns to variables.
Amatrix。行对应的观察,列变量。
A data.frame, when f is not missing (s. below).
一个data.frame时f不缺少(S.下面)。
An object of class ExpressionSet.
对象类ExpressionSet。
参数:y
Class labels. Can be one of the following:
类的标签。可以是下列之一:
A numeric vector.
一个numeric向量。
A factor.
Afactor。
A character if X is an ExpressionSet that specifies the phenotype variable.
一个如果character X是一个ExpressionSet指定的表型变量。
missing, if X is a data.frame and a proper formula f is provided.
missing,X是data.frame和适当的公式f提供。
参数:f
A two-sided formula, if X is a data.frame. The left part correspond to class labels, the right to variables.
一个双面的公式,如果X是data.frame。左边部分对应类的标签,对变量的权利。
参数:learnind
An index vector specifying the observations that belong to the learning set. May be missing; in that case, the learning set consists of all observations and predictions are made on the learning set.
索引向量指定属于学习集的意见。可能missing;在这种情况下,学习组学习集的所有意见和预测。
参数:predind
A vector containing exactly two indices that denote the two variables used for classification.
正好有两个指标,表示两个变量用于分类的一个向量。
参数:classifier
Name of function ending with CMA indicating the classifier to be used.
CMA指示要使用的分类函数名结束。
参数:gridsize
The gridsize used for two-dimensional plotting. For both variables specified in predind, an equidistant grid of size gridsize is created. The resulting two grids are then combined to obtain gridsize^2 points in the real plane which are used to draw the class regions. Defaults to 100 which is usually a reasonable choice, but takes some time.
gridsize使用两维绘图。对于predind指定两个变量,等距网格的大小gridsize创建。由此产生的两个网格,然后结合获得gridsize^2点在真正的飞机,这是用来绘制类区域。 100默认值通常是一个合理的选择,但需要一些时间。
参数:...
Further argument passed to classifier.
进一步论证通过classifier。
值----------Value----------
No return.
不归路。
作者(S)----------Author(s)----------
Martin Slawski <a href="mailto:ms@cs.uni-sb.de">ms@cs.uni-sb.de</a>
Anne-Laure Boulesteix <a href="mailto:boulesteix@ibe.med.uni-muenchen.de">boulesteix@ibe.med.uni-muenchen.de</a>.
Idea is from the <code>MLInterfaces</code> package, contributed
by Jess Mar, Robert Gentleman and Vince Carey.
参见----------See Also----------
GeneSelection, compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA, gbmCMA, knnCMA, ldaCMA, LassoCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA, pnnCMA, qdaCMA, rfCMA,
GeneSelection,compBoostCMA,dldaCMA,ElasticNetCMA,fdaCMA,flexdaCMA,gbmCMA,knnCMA,ldaCMA,LassoCMA,nnetCMA,pknnCMA,plrCMA,pls_ldaCMA,pls_lrCMA,pls_rfCMA,pnnCMA ,qdaCMA,rfCMA
举例----------Examples----------
### simple linear discrimination for the golub data:[#简单的线性判别为戈卢布数据:]
data(golub)
golubY <- golub[,1]
golubX <- as.matrix(golub[,-1])
golubn <- nrow(golubX)
set.seed(111)
learnind <- sample(golubn, size=floor(2/3*golubn))
Planarplot(X=golubX, y=golubY, learnind=learnind, predind=c(2,4),
classifier=ldaCMA)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|