ldaCMA(CMA)
ldaCMA()所属R语言包:CMA
Linear Discriminant Analysis
线性判别分析
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Performs a linear discriminant analysis under the assumption of a multivariate normal distribution in each classes (with equal, but generally structured) covariance matrices. The function lda from the package MASS is called for computation.
执行在每个类的多元正态分布的假设下(与平等的,但一般结构)的协方差矩阵的线性判别分析。函数lda包MASS要求计算。
For S4 method information, see ldaCMA-methods.
S4方法的详细信息,请参阅ldaCMA方法。
用法----------Usage----------
ldaCMA(X, y, f, learnind, models=FALSE, ...)
参数----------Arguments----------
参数:X
Gene expression data. Can be one of the following:
基因表达数据。可以是下列之一:
A matrix. Rows correspond to observations, columns to variables.
Amatrix。行对应的观察,列变量。
A data.frame, when f is not missing (s. below).
一个data.frame时f不缺少(S.下面)。
An object of class ExpressionSet.
对象类ExpressionSet。
参数:y
Class labels. Can be one of the following:
类的标签。可以是下列之一:
A numeric vector.
一个numeric向量。
A factor.
Afactor。
A character if X is an ExpressionSet that specifies the phenotype variable.
一个如果character X是一个ExpressionSet指定的表型变量。
missing, if X is a data.frame and a proper formula f is provided.
missing,X是data.frame和适当的公式f提供。
WARNING: The class labels will be re-coded to range from 0 to K-1, where K is the total number of different classes in the learning set.
警告:类标签将被重新编码范围从0K-1,K是在学习集不同类别的总数。
参数:f
A two-sided formula, if X is a data.frame. The left part correspond to class labels, the right to variables.
一个双面的公式,如果X是data.frame。左边部分对应类的标签,对变量的权利。
参数:learnind
An index vector specifying the observations that belong to the learning set. May be missing; in that case, the learning set consists of all observations and predictions are made on the learning set.
索引向量指定属于学习集的意见。可能missing;在这种情况下,学习组学习集的所有意见和预测。
参数:models
a logical value indicating whether the model object shall be returned
一个逻辑值,该值指示是否应归还模型对象
参数:...
Further arguments to be passed to lda from the package MASS
进一步的参数被传递到lda包MASS
值----------Value----------
An object of class cloutput.
对象类cloutput。
注意----------Note----------
Excessive variable selection has usually to performed before ldaCMA can be applied in the p > n setting. Not reducing the number of variables can result in an error
过多的变量选择通常之前执行ldaCMA可以在p > n设置应用。变量的数目不会减少,可能会导致错误
作者(S)----------Author(s)----------
Martin Slawski <a href="mailto:ms@cs.uni-sb.de">ms@cs.uni-sb.de</a>
Anne-Laure Boulesteix <a href="mailto:boulesteix@ibe.med.uni-muenchen.de">boulesteix@ibe.med.uni-muenchen.de</a>
参考文献----------References----------
<h3>See Also</h3> <code>compBoostCMA</code>, <code>dldaCMA</code>, <code>ElasticNetCMA</code>, <code>fdaCMA</code>, <code>flexdaCMA</code>, <code>gbmCMA</code>, <code>knnCMA</code>, <code>LassoCMA</code>, <code>nnetCMA</code>, <code>pknnCMA</code>, <code>plrCMA</code>, <code>pls_ldaCMA</code>, <code>pls_lrCMA</code>, <code>pls_rfCMA</code>, <code>pnnCMA</code>, <code>qdaCMA</code>, <code>rfCMA</code>, <code>scdaCMA</code>,
举例----------Examples----------
### load Golub AML/ALL data[#负载戈卢布反洗钱/所有数据]
data(golub)
### extract class labels[#提取类标签]
golubY <- golub[,1]
### extract gene expression from first 10 genes[#提取从第10个基因的基因表达]
golubX <- as.matrix(golub[,2:11])
### select learningset[#选择learningset]
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run LDA[#运行LDA的]
ldaresult <- ldaCMA(X=golubX, y=golubY, learnind=learnind)
### show results[#显示结果]
show(ldaresult)
ftable(ldaresult)
plot(ldaresult)
### multiclass example:[#多类例如:]
### load Khan data[##负载汗数据]
data(khan)
### extract class labels[#提取类标签]
khanY <- khan[,1]
### extract gene expression from first 10 genes[#提取从第10个基因的基因表达]
khanX <- as.matrix(khan[,2:11])
### select learningset[#选择learningset]
set.seed(111)
learnind <- sample(length(khanY), size=floor(ratio*length(khanY)))
### run LDA[#运行LDA的]
ldaresult <- ldaCMA(X=khanX, y=khanY, learnind=learnind)
### show results[#显示结果]
show(ldaresult)
ftable(ldaresult)
plot(ldaresult)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|