fdaCMA(CMA)
fdaCMA()所属R语言包:CMA
Fisher's Linear Discriminant Analysis
费希尔的线性判别分析
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Fisher's Linear Discriminant Analysis constructs a subspace of 'optimal projections' in which classification is performed. The directions of optimal projections are computed by the function cancor from the package stats. For an exhaustive treatment, see e.g. Ripley (1996).
Fisher线性判别分析,构建了一个“最佳预测”中的分类进行的子空间。计算功能包cancorstats最优预测的方向。对于一个详尽的治疗,看到如里普利(1996年)。
For S4 method information, see fdaCMA-methods.
S4方法的详细信息,请参阅fdaCMA-methods.
用法----------Usage----------
fdaCMA(X, y, f, learnind, comp = 1, plot = FALSE,models=FALSE)
参数----------Arguments----------
参数:X
Gene expression data. Can be one of the following:
基因表达数据。可以是下列之一:
A matrix. Rows correspond to observations, columns to variables.
Amatrix。行对应的观察,列变量。
A data.frame, when f is not missing (s. below).
一个data.frame时f不缺少(S.下面)。
An object of class ExpressionSet.
对象类ExpressionSet。
参数:y
Class labels. Can be one of the following:
类的标签。可以是下列之一:
A numeric vector.
一个numeric向量。
A factor.
Afactor。
A character if X is an ExpressionSet that specifies the phenotype variable.
一个如果character X是一个ExpressionSet指定的表型变量。
missing, if X is a data.frame and a proper formula f is provided. WARNING: The class labels will be re-coded to range from 0 to K-1, where K is the total number of different classes in the learning set.
missing,X是data.frame和适当的公式f提供。警告:类标签将被重新编码范围从0K-1,K是在学习集不同类别的总数。
参数:f
A two-sided formula, if X is a data.frame. The left part correspond to class labels, the right to variables.
一个双面的公式,如果X是data.frame。左边部分对应类的标签,对变量的权利。
参数:learnind
An index vector specifying the observations that belong to the learning set. May be missing; in that case, the learning set consists of all observations and predictions are made on the learning set.
索引向量指定属于学习集的意见。可能missing;在这种情况下,学习组学习集的所有意见和预测。
参数:comp
Number of discriminant coordinates (projections) to compute. Default is one, must be smaller than or equal to K-1, where K is the number of classes.
判别坐标数量(预测)计算。默认是,必须小于或等于K-1,其中K是班级数目。
参数:plot
Should the projections onto the space spanned by the optimal projection directions be plotted ? Default is FALSE.
应该被绘制到空间的最优投影方向的跨区预测?默认FALSE。
参数:models
a logical value indicating whether the model object shall be returned
一个逻辑值,该值指示是否应归还模型对象
值----------Value----------
An object of class cloutput.
对象类cloutput。
注意----------Note----------
Excessive variable selection has usually to performed before fdaCMA can be applied in the p > n setting. Not reducing the number of variables can result in an error
过多的变量选择通常之前执行fdaCMA可以在p > n设置应用。变量的数目不会减少,可能会导致错误
作者(S)----------Author(s)----------
Martin Slawski <a href="mailto:ms@cs.uni-sb.de">ms@cs.uni-sb.de</a>
Anne-Laure Boulesteix <a href="mailto:boulesteix@ibe.med.uni-muenchen.de">boulesteix@ibe.med.uni-muenchen.de</a>
参考文献----------References----------
<h3>See Also</h3> <code>compBoostCMA</code>, <code>dldaCMA</code>, <code>ElasticNetCMA</code>, <code>fdaCMA</code>, <code>flexdaCMA</code>, <code>gbmCMA</code>, <code>knnCMA</code>, <code>ldaCMA</code>, <code>LassoCMA</code>, <code>nnetCMA</code>, <code>pknnCMA</code>, <code>plrCMA</code>, <code>pls_ldaCMA</code>, <code>pls_lrCMA</code>, <code>pls_rfCMA</code>, <code>pnnCMA</code>, <code>qdaCMA</code>, <code>rfCMA</code>,
举例----------Examples----------
### load Golub AML/ALL data[#负载戈卢布反洗钱/所有数据]
data(golub)
### extract class labels[#提取类标签]
golubY <- golub[,1]
### extract gene expression from first 10 genes[#提取从第10个基因的基因表达]
golubX <- as.matrix(golub[,2:11])
### select learningset[#选择learningset]
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run FDA[#运行FDA的]
fdaresult <- fdaCMA(X=golubX, y=golubY, learnind=learnind, comp = 1, plot = TRUE)
### show results[#显示结果]
show(fdaresult)
ftable(fdaresult)
plot(fdaresult)
### multiclass example:[#多类例如:]
### load Khan data[##负载汗数据]
data(khan)
### extract class labels[#提取类标签]
khanY <- khan[,1]
### extract gene expression from first 10 genes[#提取从第10个基因的基因表达]
khanX <- as.matrix(khan[,2:11])
### select learningset[#选择learningset]
set.seed(111)
learnind <- sample(length(khanY), size=floor(ratio*length(khanY)))
### run FDA[#运行FDA的]
fdaresult <- fdaCMA(X=khanX, y=khanY, learnind=learnind, comp = 2, plot = TRUE)
### show results[#显示结果]
show(fdaresult)
ftable(fdaresult)
plot(fdaresult)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|