找回密码
 注册
查看: 1106|回复: 0

R语言 zipfR包 EV-EVm.spc()函数中文帮助文档(中英文对照)

  [复制链接]
发表于 2012-10-2 07:47:14 | 显示全部楼层 |阅读模式
EV-EVm.spc(zipfR)
EV-EVm.spc()所属R语言包:zipfR

                                        Binomial Interpolation (zipfR)
                                         二项式插值(zipfR)

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Compute the expected vocabulary size E[V(N)] (with function EV.spc) or expected frequency spectrum E[V_m(N)] (with function EVm.spc) for a random sample of size N from a given frequency spectrum (i.e., an object of class spc).  The expectations are calculated by binomial interpolation (following Baayen 2001, pp. 64-69).
计算预期的词汇量的大小E[V(N)](函数EV.spc)或预期的频谱E[V_m(N)](函数EVm.spc)为随机抽样的大小N与从给定的频谱(即,一个类的对象“spc”)。由二项式的插补(以下Baayen 2001年,页64-69)计算的期望。

Note that these functions are not user-visible.  They can be called implicitly through the generic methods EV and EVm, applied to an object of type spc.
需要注意的是,这些功能是用户不可见。他们可以通过隐式调用泛型方法EV和EVm,适用的对象类型spc。


用法----------Usage----------



  ## S3 method for class 'spc'
EV(obj, N, allow.extrapolation=FALSE, ...)

  ## S3 method for class 'spc'
EVm(obj, m, N, allow.extrapolation=FALSE, ...)




参数----------Arguments----------

参数:obj
an object of class spc, representing a frequency spectrum
对象的类spc,频谱


参数:m
positive integer value determining the frequency class m for which E[V_m(N)] be returned (or a vector of such values)
正整数的值决定的频度等级mE[V_m(N)]返回(或等价值的向量)


参数:N
sample size N for which the expected vocabulary size or frequency spectrum are calculated (or a vector of sample sizes)
样本量N预期的词汇量的大小或频谱计算(或向量的样本大小)


参数:allow.extrapolation
if TRUE, the requested sample size N may be larger than the sample size of the frequency spectrum obj, for binomial extrapolation.  This obtion should be used with great caution (see "Details" below).
如果TRUE,所要求的样本量N可能是大于样本量的频谱obj,二项式推断。这obtion使用时应十分谨慎(请参阅下面的“详细信息”)。


参数:...
additional arguments passed on from generic methods will be ignored
泛型方法传递额外的参数将被忽略


Details

详细信息----------Details----------

These functions are naive implementations of binomial interpolation, using Equations (2.41) and (2.43) from Baayen (2001).  No guarantees are made concerning their numerical accuracy, especially for extreme values of m and N.
这些函数是二项式插值天真实现从Baayen(2001),使用方程(2.41)和(2.43)。关于其数值的准确度,特别是对极端值m和N作任何保证。

According to Baayen (2001), pp. 69-73., the same equations can also be used for binomial extrapolation of a given frequency spectrum to larger sample sizes.  However, they become numerically unstable in this case and will typically break down when extrapolating to more than twice the size of the observed sample (Baayen 2001, p. 75). Therefore, extrapolation has to be enabled explicitly with the option allow.extrapolation=TRUE and should be used with great caution.
根据Baayen(2001),第69-73页。相同的方程也可以被用于一个给定的频率频谱的二项式外推到更大的样本大小。然而,它们成为数字上是不稳定的,在这种情况下,通常会打破时,外推到两倍以上的大小的观测样本(Baayen 2001,第75页)。因此,推断必须显式启用的选项allow.extrapolation=TRUE,应使用非常谨慎。


值----------Value----------

EV returns the expected vocabulary size E[V(N)] for a random sample of N tokens from the frequency spectrum obj, and EVm returns the expected spectrum elements E[V_m(N)] for a random sample of N tokens from obj, calculated by binomial interpolation.
EV返回预期的词汇量的大小E[V(N)]随机抽样的N令牌的频谱obj和EVm返回了预期的光谱元素<X >随机抽样的E[V_m(N)]令牌N,由二项式插值计算。


参考文献----------References----------

Kluwer, Dordrecht.

参见----------See Also----------

EV and EVm for the generic methods and links to other implementations
EV和EVm的一般方法和链接到其他的实现

spc.interp and vgc.interp are convenience functions that compute an expected frequency spectrum or vocabulary growth curve by binomial interpolation
spc.interp和vgc.interp方便的功能,计算预期的频谱或词汇增长曲线二项式插

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-23 19:55 , Processed in 0.027399 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表