NSrates(YieldCurve)
NSrates()所属R语言包:YieldCurve
Interest rates of the Nelson-Siegel's model.
利率的Nelson-Siegel的模型。
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Returns the interest rates by Nelson-Siegel's model.
返回利率的Nelson-Siegel的模型。
用法----------Usage----------
NSrates(betaCoeff, lambdat, maturity)
参数----------Arguments----------
参数:betaCoeff
vector or matrix of the beta's coefficients.
向量或矩阵的β系数。
参数:lambdat
value of the estimated lambda
值的估计的lambda
参数:maturity
maturity of the yield curve of which want to return the interest rates.
成熟的要返回的利率收益曲线。
Details
详细信息----------Details----------
betaCoeff is a vector or matrix of the three coefficients of the Nelson-Siegel's model
betaCoeff是一个向量或矩阵的三个系数的Nelson-Siegel的模型
值----------Value----------
Return interest rates in matrix object with number of rows equal to nrow(betaCoeff) and number of columns equal to length(maturity).
行等于nrow(betaCoeff)数量等于length(maturity)的列数,返回的利率矩阵对象。
(作者)----------Author(s)----------
Sergio Salvino Guirreri
参考文献----------References----------
Diebold, F.X. and Li, C. (2006), Forecasting the Term Structure of Government Bond Yields, Journal of Econometrics, 130, 337-364.
Diebold, F.X., Ji, L. and Li, C. (2006), A Three-Factor Yield Curve Model: Non-Affine Structure, Systematic Risk Sources, and Generalized Duration, in L.R. Klein (ed.), Long-Run Growth and Short-Run Stabilization: Essays in Memory of Albert Ando. Cheltenham, U.K.: Edward Elgar, 240-274.
Nelson, C.R., and A.F. Siegel (1987), Parsimonious Modeling of Yield Curve, The Journal of Business, 60, 473-489.
实例----------Examples----------
data(FedYieldCurve)
b <- c(11.17514, -3.979371, 0.1302654)
lambda <- c(0.1494588)
tau <- c(3, 6, 12, 60, 84, 120 )
y <- NSrates( b, lambda, tau)
plot(tau,FedYieldCurve[10,],main="Fitting Nelson-Siegel yield curve", type="o")
lines(tau,y, col=2)
legend("topleft",legend=c("observed yield curve","fitted yield curve"),
col=c(1,2),lty=1)
grid()
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|