notablyDifferent(yaImpute)
notablyDifferent()所属R语言包:yaImpute
Finds obervations with large differences between observed and imputed values
查找obervations的观察和估算值之间有较大的差异
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This routine identifies observations with large errors as measured by scaled root mean square error (see rmsd.yai). A threshold is used to detect observations with large differences.
这个例程确定观测较大的误差作为衡量规模的根均方误差(见rmsd.yai“)。的阈值是用于检测观测有较大的差异。
用法----------Usage----------
notablyDifferent(object,vars=NULL,threshold=NULL,p=.05,...)
参数----------Arguments----------
参数:object
an object of class yai.
对象类yai。
参数:vars
a vector of character strings naming the variables to use, if null the X-variables form object are used.
一个矢量的字符串命名变量来使用,如果为null,X-变量的形式object。
参数:threshold
a threshold that if exceeded the observations are listed as notably different.
一个阈值,如果超过被列为显着不同的意见。
参数:p
(1-p)*100 is the percentile point in the distribution of differences used to compute the threshold (used when threshold is NULL).
(1-p)*100是百分位点的分布的差异来计算阈值(当threshold是NULL)。
参数:...
additional arguments passed to impute.yai.
额外的参数传递给impute.yai。
Details
详细信息----------Details----------
The scaled differences are computed a follows:
规模差异计算如下:
A matrix of differences between observed and imputed values is computed for each observation (rows) and each variable (columns).
矩阵的观察和估算值之间的差异计算出每个观测(行)和每一个变量(列)。
These differences are scaled by dividing by the standard deviation of the observed values among the reference observations.
这些差异被缩放除以参考观测之间所观察到的值的标准偏差。
The scaled differences are squared.
规模差异的平方。
Row means are computed resulting in one value for each observation.
行的手段,导致每个观测值计算。
The square root of each of these values is taken.
这些值中的每一个的的平方根。
These values are Euclidean distances between the target observations and their nearest references as measured using specified variables. All the variables that are used must have observed and imputed values. Generally, this will be the X-variables and not the Y-variables.
这些值是使用指定变量的测量目标之间的欧氏距离观测资料和最近的引用。所有的变量,必须观察和估算值。一般情况下,这将是在X-的变量,而不是变量的Y。
When threshold is NULL, the function computes one using the quantile function with its default arguments and probs=1-p.
当threshold是NULL,函数计算一个使用它的默认参数和quantileprobs=1-p功能。
值----------Value----------
A named list of several items. In all cases vectors are named using the observation ids which are the row names of the data used to build the yaiobject.
命名列表的几个项目。在所有的情况下,向量的使用观察IDS是用于构建yai对象的数据行名称命名。
参数:call
The call.
该呼叫。
参数:vars
The variables used (may be fewer than requested).
使用的变量(可能比要求的少)。
参数:threshold
The threshold value.
该阈值。
参数:notablyDifferent.refs
A sorted named vector of references that exceed the threshold.
一个排序命名为向量的超过阈值的引用。
参数:notablyDifferent.trgs
A sorted named vector of targets that exceed the threshold.
一个有序的命名的目标超出阈值的向量。
参数:rmsdS.refs
A sorted named vector of scaled RMSD references.
一个排序的命名向量的规模RMSD引用。
参数:rmsdS.trgs
A sorted named vector of scaled RMSD targets.
一个排序的命名向量的规模RMSD目标。
(作者)----------Author(s)----------
Nicholas L. Crookston <a href="mailto:ncrookston.fs@gmail.com">ncrookston.fs@gmail.com</a> <br>
参见----------See Also----------
notablyDistant, plot.notablyDifferent and yai
notablyDistant,plot.notablyDifferent和yai
实例----------Examples----------
data(iris)
set.seed(12345)
# form some test data[形成一些测试数据。]
refs=sample(rownames(iris),50)
x <- iris[,1:3] # Sepal.Length Sepal.Width Petal.Length[Sepal.Length Sepal.Width Petal.Length]
y <- iris[refs,4:5] # Petal.Width Species[Petal.Width物种]
# build an msn run, first build dummy variables for species.[建立一个MSN运行,首先建立虚拟变量的物种。]
sp1 <- as.integer(iris$Species=="setosa")
sp2 <- as.integer(iris$Species=="versicolor")
y2 <- data.frame(cbind(iris[,4],sp1,sp2),row.names=rownames(iris))
y2 <- y2[refs,]
names(y2) <- c("Petal.Width","Sp1","Sp2")
msn <- yai(x=x,y=y2,method="msn")
notablyDifferent(msn)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|