wle.t.test(wle)
wle.t.test()所属R语言包:wle
Weighted Likelihood Student's t-Test
加权似然学生的t检验
译者:生物统计家园网 机器人LoveR
描述----------Description----------
wle.t.test performs one and two sample Weighted Likelihood t-tests on vectors of data. This is a robust version of the classical t-test. It should be used when the majority of the data follows a normal distribution.
wle.t.test执行一到两个样本加权似然t检验,向量数据。经典的t-检验,这是一个健壮的版本。时,应使用的数据的大部分服从正态分布。
用法----------Usage----------
wle.t.test(x, y = NULL, alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, var.equal = FALSE, conf.level = 0.95,
boot=30, group, num.sol=1, raf="HD", smooth=0.003,
tol=10^(-6), equal=10^(-3), max.iter=500)
参数----------Arguments----------
参数:x
a numeric vector of data values.
的数据值的一个数值向量。
参数:y
an optional numeric vector data values.
一个可选的数字矢量数据值。
参数:alternative
character specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.
字符指定其他假设,必须有一个"two.sided"(默认),"greater"或"less"。您可以只指定的首字母。
参数:mu
a number indicating the true value of the mean (or difference in means if you are performing a two sample test).
一个数字,表示真值的平均值(或不同的手段,如果你执行的是两个样本测试)。
参数:paired
a logical indicating whether you want a paired weighted t-test.
逻辑是否要配对的加权t检验。
参数:var.equal
a logical variable indicating whether to treat the two variances as being equal. If TRUE then the pooled variance is used to estimate the variance otherwise the Welch approximation to the degrees of freedom is used.
一个逻辑变量,表示是否将作为平等的两个差异。如果TRUE用于然后合并方差是用来估计的方差另有韦尔奇近似的自由度。
参数:conf.level
confidence level of the interval.
该间隔的置信水平。
参数:boot
the number of starting points based on boostrap subsamples to use in the search of the roots.
基于自举子样本的起点,使用在搜索的根的数目。
参数:group
the dimension of the bootstap subsamples. The default value is max(round(size/4),2) where size is the number of observations.
的维度的bootstap子样本。默认值是max(round(size/4),2)size的若干意见。
参数:num.sol
maximum number of roots to be searched.
要搜索的最大根数。
参数:raf
type of Residual adjustment function to be use:
类型的残余调节功能,可以使用:
raf="HD": Hellinger Distance RAF,
raf="HD":Hellinger距离RAF,
raf="NED": Negative Exponential Disparity RAF,
raf="NED":负指数差异RAF,
raf="SCHI2": Symmetric Chi-Squared Disparity RAF.
raf="SCHI2":对称卡方差异皇家空军。
参数:smooth
the value of the smoothing parameter.
的平滑化参数的值。
参数:tol
the absolute accuracy to be used to achieve convergence of the algorithm.
要使用的绝对精度实现算法的收敛性。
参数:equal
the absolute value for which two roots are considered the same. (This parameter must be greater than tol).
绝对的值,两个根被认为是相同的。 (此参数必须大于tol)。
参数:max.iter
maximum number of iterations.
最大迭代次数。
Details
详细信息----------Details----------
If paired is TRUE then both x and y must be specified and they must be the same length. Missing values are removed (in pairs if paired is TRUE). If var.equal is TRUE then the pooled estimate of the variance is used. By default, if var.equal is FALSE then the variance is estimated separately for both groups and the Welch modification to the degrees of freedom is used.
paired如果是TRUE然后两个x和y必须指定,他们必须是相同的长度。遗漏值被删除(在对paired如果是TRUE)。如果var.equalTRUE然后合并估计值的方差使用。默认情况下,如果var.equalFALSE然后方差估计这两个组的,和韦尔奇修改的自由度单独使用。
值----------Value----------
The function return a list of class "wle.t.test" with the following components:
该函数返回一个列表类"wle.t.test"的下列组件:
<table summary="R valueblock"> <tr valign="top"><td>test</td> <td> A list with two dimensions. Each cell is related with a combination of 'x', 'y' roots. In each cell a list of class "htest" containing the following components:
<table summary="R valueblock"> <tr valign="top"> <TD>test </ TD> <td>一个列表有两个方面。每个单元格相关的组合的x,y的根部。在每个小区的列表的类"htest"包含以下组件:
statistic the value of the t-statistic.
statistic的t-统计量的值。
parameters the degrees of freedom for the t-statistic.
parameterst-统计量的自由度。
p.value the p-value for the test.
p.value的P-值进行测试。
conf.int a confidence interval for the mean appropriate to the specified alternative hypothesis.
conf.int的置信区间的意思是适合到指定的备择假设。
estimate the estimated mean or difference in means depending on whether it was a one-sample test or a two-sample test.
estimate估计平均或手段,这取决于它是否是一个样本测试或双样本检验的差异。
null.value the specified hypothesized value of the mean or mean difference depending on whether it was a one-sample test or a two-sample test.
null.value指定的假设值的平均或平均差异取决于它是否是一个样本检验或双样本检验的。
alternative a character string describing the alternative hypothesis.
alternative一个字符串描述了另一种假设。
method a character string indicating what type of t-test was performed.
method一个字符串,表示是什么类型的t-检验进行。
data.name a character string giving the name(s) of the data.
data.name(s)的数据的名称的字符字符串,给出。
x.weights the weights related to the 'x' data.
x.weights有关的“x”的数据的权重。
y.weights the weights related to the 'y' data.
y.weights相关的“y”数据的权重。
x.root the number of the 'x' root.
x.root的“x”的根的数目。
y.root the number of the 'y' root.
y.root的Y根数。
</td></tr>
</ TD> </ TR>
<tr valign="top"><td>x.tot.sol</td> <td> the number of solutions for the dataset 'x'.</td></tr>
<tr valign="top"> <TD> x.tot.sol </ TD> <TD>数据集的“X”的解决方案。</ TD> </ TR>
<tr valign="top"><td>y.tot.sol</td> <td> the number of solutions for the dataset 'y' or 1.</td></tr>
<tr valign="top"> <TD> y.tot.sol </ TD> <TD>解决方案的数据集y或1的数量。</ TD> </ TR>
<tr valign="top"><td>call</td> <td> the match.call().</td></tr>
<tr valign="top"> <TD> call </ TD> <TD> match.call()。</ TD> </ TR>
<tr valign="top"><td>paired</td> <td> a logical indicating whether is a paired weighted t-test.</td></tr>
<tr valign="top"> <TD> paired </ TD> <td>一个逻辑是否是配对的加权t检验。</ TD> </ TR>
<tr valign="top"><td>x</td> <td> 'x' data.</td></tr>
<tr valign="top"> <TD>x </ TD> <TD>X的数据。</ TD> </ TR>
<tr valign="top"><td>y</td> <td> 'y' data or NULL.</td></tr>
<tr valign="top"> <TD>y </ TD> <TD>Y或NULL。</ TD> </ TR>
</table>
</ TABLE>
(作者)----------Author(s)----------
Claudio Agostinelli
参考文献----------References----------
Agostinelli, C., (1998) Inferenza statistica robusta basata sulla funzione di verosimiglianza pesata: alcuni sviluppi, Ph.D Thesis, Department of Statistics, University of Padova (in italian).
Agostinelli, C., (2002) Un approccio alla verifica d'ipotesi robusta basato sulla funzione di verosimiglianza pesata - Robust Testing Hypotheses via Weighted Likelihood function, Statistica, Anno LXII, 1, 87-110.
Agostinelli, C., and Markatou, M., (2001) Test of hypotheses based on the Weighted Likelihood Methodology, Statistica Sinica, vol. 11, n. 2, 499-514.
实例----------Examples----------
library(wle)
set.seed(1234)
x <- rnorm(20,0,1)
y <- rnorm(20,6,1)
t.test(x,y) # P < 2.2e-16[P <2.2E-16]
wle.t.test(x,y,group=5) # P < 2.2e-16[P <2.2E-16]
t.test(x,y=c(y,250)) # P = 0.1419 -- NOT significant anymore[P = 0.1419 - 不显着了]
wle.t.test(x,y=c(y,250),group=5) # P < 2.2e-16 -- still significant [P <2.2E-16 - 仍然显著]
set.seed(1234)
# three roots for 'x' and three roots for 'y'[三根x和Y三根“]
# with nine t-test value[九t检验值]
res <- wle.t.test(x=c(rnorm(40,0,1),rnorm(40,10,1)),
y=c(rnorm(40,0,1),rnorm(40,10,1)),
group=4,num.sol=3,boot=100)
print(res) # print ALL the t-test[打印所有的t检验]
print(res,x.root=1,y.root=1) # print the test associated to the [打印测试关联到]
# x.root=1,y.root=1 [x.root = 1,y.root = 1]
root.1.1 <- res$test[[1]][[1]] # access to the object associated [到相关联的对象的访问]
# to the x.root=1,y.root=1 [到x.root = 1,y.root = 1]
names(root.1.1)
set.seed(1234)
# one root and NOT significant t-test[一个根和不显着的t检验]
wle.t.test(x=c(rnorm(40,0,1),rnorm(40,10,1)),
y=c(rnorm(40,0,1),rnorm(40,10,1)),
group=4,num.sol=3,boot=100,paired=TRUE)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|