wle.lm(wle)
wle.lm()所属R语言包:wle
Fitting Linear Models using Weighted Likelihood
配件线性模型的加权似然
译者:生物统计家园网 机器人LoveR
描述----------Description----------
wle.lm is used to fit linear models via Weighted Likelihood, when the errors are iid from a normal distribution with null mean and unknown variance. The carriers are considered fixed. Note that this estimator is robust against the presence of bad leverage points too.
wle.lm通过加权似然,当误差是独立同分布的零均值和方差未知的正态分布,线性模型来拟合。被认为是固定运营商。需要注意的是这个估计是稳健的,对坏的平衡点的存在。
用法----------Usage----------
wle.lm(formula, data=list(), model=TRUE, x=FALSE,
y=FALSE, boot=30, group, num.sol=1, raf="HD",
smooth=0.031, tol=10^(-6), equal=10^(-3),
max.iter=500, contrasts=NULL, verbose=FALSE)
参数----------Arguments----------
参数:formula
a symbolic description of the model to be fit. The details of model specification are given below.
一个象征性的模型来描述是合适的。模型规范的细节在下面给出。
参数:data
an optional data frame containing the variables in the model. By default the variables are taken from the environment which wle.lm is called from.
一个可选的数据框包含在模型中的变量。默认情况下,变量是从wle.lm被称为从环境。
参数:model, x, y
logicals. If TRUE the corresponding components of the fit (the model frame, the model matrix, the response.)
的逻辑。如果TRUE拟合的相应部件(模型框架,模型矩阵,响应。)
参数:boot
the number of starting points based on boostrap subsamples to use in the search of the roots.
基于自举子样本的起点,使用在搜索的根的数目。
参数:group
the dimension of the bootstap subsamples. The default value is max(round(size/4),var) where size is the number of observations and var is the number of variables.
的维度的bootstap子样本。默认值是max(round(size/4),var)size的一些意见和var是变量的数目。
参数:num.sol
maximum number of roots to be searched.
要搜索的最大根数。
参数:raf
type of Residual adjustment function to be used:
类型的残余调节功能被使用:
raf="HD": Hellinger Distance RAF,
raf="HD":Hellinger距离RAF,
raf="NED": Negative Exponential Disparity RAF,
raf="NED":负指数差异RAF,
raf="SCHI2": Symmetric Chi-Squared Disparity RAF.
raf="SCHI2":对称卡方差异皇家空军。
参数:smooth
the value of the smoothing parameter.
的平滑化参数的值。
参数:tol
the absolute accuracy to be used to achieve convergence of the algorithm.
要使用的绝对精度实现算法的收敛性。
参数:equal
the absolute value for which two roots are considered the same. (This parameter must be greater than tol).
绝对的值,两个根被认为是相同的。 (此参数必须大于tol)。
参数:max.iter
maximum number of iterations.
最大迭代次数。
参数:contrasts
an optional list. See the contrasts.arg of model.matrix.default.
可选列表。请参阅contrasts.argmodel.matrix.default。
参数:verbose
if TRUE warnings are printed.
如果TRUE警告被打印出来。
Details
详细信息----------Details----------
Models for wle.lm are specified symbolically. A typical model has the form response ~ terms where response is the (numeric) response vector and terms is a series of terms which specifies a linear predictor for response. A terms specification of the form first+second indicates all the terms in first together with all the terms in second with duplicates removed. A specification of the form first:second indicates the the set of terms obtained by taking the interactions of all terms in first with all terms in second. The specification first*second indicates the cross of first and second. This is the same as first+second+first:second.
模型wle.lm的符号。典型的模型形式response ~ terms其中response是响应向量(数字)和terms是一系列的条款,指定一个线性预测response。一个术语规范的形式first+second表示first一起在second重复删除的所有条款中的所有条款。一个规范的形式first:second的表示的术语集firstsecond的所有条款的相互作用的所有条款。规格first*second表明first和second交叉的。这是相同first+second+first:second。
值----------Value----------
wle.lm returns an object of class "wle.lm".
wle.lm返回一个对象的class"wle.lm"的。
The function summary is used to obtain and print a summary of the results. The generic accessor functions coefficients, residuals and fitted.values extract coefficients, residuals and fitted values returned by wle.lm.
函数summary用于获取和打印结果的摘要。一般的访问功能coefficients,residuals和fitted.values的提取系数,残差和拟合值返回wle.lm。
The object returned by wle.lm are:
对象返回wle.lm是:
<table summary="R valueblock"> <tr valign="top"><td>coefficients</td> <td> the parameters estimator, one row vector for each root found.</td></tr> <tr valign="top"><td>standard.error</td> <td> an estimation of the standard error of the parameters estimator, one row vector for each root found.</td></tr> <tr valign="top"><td>scale</td> <td> an estimation of the error scale, one value for each root found.</td></tr> <tr valign="top"><td>residuals</td> <td> the unweighted residuals from the estimated model, one column vector for each root found.</td></tr> <tr valign="top"><td>fitted.values</td> <td> the fitted values from the estimated model, one column vector for each root found.</td></tr> <tr valign="top"><td>tot.weights</td> <td> the sum of the weights divide by the number of observations, one value for each root found.</td></tr> <tr valign="top"><td>weights</td> <td> the weights associated to each observation, one column vector for each root found.</td></tr> <tr valign="top"><td>f.density</td> <td> the non-parametric density estimation.</td></tr> <tr valign="top"><td>m.density</td> <td> the smoothed model.</td></tr> <tr valign="top"><td>delta</td> <td> the Pearson residuals.</td></tr> <tr valign="top"><td>freq</td> <td> the number of starting points converging to the roots.</td></tr> <tr valign="top"><td>tot.sol</td> <td> the number of solutions found.</td></tr> <tr valign="top"><td>not.conv</td> <td> the number of starting points that does not converge after the max.iter iterations are reached.</td></tr> <tr valign="top"><td>call</td> <td> the match.call().</td></tr> <tr valign="top"><td>contrasts</td> <td> </td></tr> <tr valign="top"><td>xlevels</td> <td> </td></tr> <tr valign="top"><td>terms</td> <td> the model frame.</td></tr> <tr valign="top"><td>model</td> <td> if model=TRUE a matrix with first column the dependent variable and the remain column the explanatory variables for the full model.</td></tr> <tr valign="top"><td>x</td> <td> if x=TRUE a matrix with the explanatory variables for the full model.</td></tr> <tr valign="top"><td>y</td> <td> if y=TRUE a vector with the dependent variable.</td></tr> <tr valign="top"><td>info</td> <td> not well working yet, if 0 no error occurred.</td></tr> </table>
<table summary="R valueblock"> <tr valign="top"> <TD> coefficients</ TD> <TD>的参数估计,每一根发现一个行向量。</ TD> </ TR> <tr valign="top"> <TD> standard.error </ TD> <TD>的参数估计的标准误差的估计,每一根发现一个行向量。</ TD> </ TR> <tr valign="top"> <TD> scale</ TD> <TD>的错误规模的估计,每根发现的一个值。</ TD> </ TR> <TR VALIGN =“”> <TD>residuals </ TD> <TD>未加权的估计模型的残差,每一根发现一个列向量。</ TD> </ TR> <TR VALIGN =“顶部“> <TD> fitted.values </ TD> <TD>估计模型的拟合值,每一根发现一个列向量。</ TD> </ TR> <tr valign="top"> < tot.weights TD> </ TD> <TD>的权重总和除以观测值的数量,每根发现的一个值。</ TD> </ TR> <tr valign="top"> < weights TD> </ TD> <TD>相关的权重给每个观察,每一根发现一个列向量。</ TD> </ TR> <tr valign="top"> <TD> X> </ TD> <TD>非参数密度估计。</ TD> </ TR> <tr valign="top"> <TD>f.density </ TD> <TD>的平滑模型。</ TD> </ TR> <tr valign="top"> <TD>m.density</ TD> <TD> Pearson残差。</ TD> </ TR> <TR VALIGN =“顶“<TD> delta </ TD> <TD>收敛的根源出发点的数量。</ TD> </ TR> <tr valign="top"> <TD><X > </ TD> <TD>找到解决方案的数量。</ TD> </ TR> <tr valign="top"> <TD>freq </ TD> <TD>数的开始点tot.sol迭代不收敛后到达。</ TD> </ TR> <tr valign="top"> <TD> not.conv</ TD> <TD>的比赛。叫()。</ TD> </ TR> <tr valign="top"> <TD>max.iter </ TD> <TD> </ TD> </ TR> <TR VALIGN =“顶” > <TD> call </ TD> <TD> </ TD> </ TR> <tr valign="top"> <TD> contrasts</ TD> <TD>的模型框架。</ TD> </ TR> <tr valign="top"> <TD> xlevels </ TD> <TD>如果terms矩阵与第一列中的因变量和保持列的是整个模型的解释变量。</ TD> </ TR> <tr valign="top"> <TD> model </ TD> <TD>如果model=TRUE矩阵的解释的完整模型的变量。</ TD> </ TR> <tr valign="top"> <TD> x </ TD> <TD>如果x=TRUE与因变量的向量。 </ TD> </ TR> <tr valign="top"> <TD>y </ TD> <TD>还不能很好地工作,如果没有错误发生。</ TD> </ TR> </ TABLE>
(作者)----------Author(s)----------
Claudio Agostinelli
参考文献----------References----------
Agostinelli, C., (1998) Inferenza statistica robusta basata sulla funzione di verosimiglianza pesata: alcuni sviluppi, Ph.D Thesis, Department of Statistics, University of Padova.
Agostinelli, C., Markatou, M., (1998) A one-step robust estimator for regression based on the weighted likelihood reweighting scheme, Statistics \& Probability Letters, Vol. 37, n. 4, 341-350.
Agostinelli, C., (1998) Verosimiglianza pesata nel modello di regressione lineare, XXXIX Riunione scientifica della Societ\'a Italiana di Statistica, Sorrento 1998.
参见----------See Also----------
wle.smooth an algorithm to choose the smoothing parameter for normal distribution and normal kernel.
wle.smooth一个算法来选择平滑参数的正常分布和正态分布内核。
实例----------Examples----------
library(wle)
# You can find this data set in:[你可以找到这个数据集:]
# Hawkins, D.M., Bradu, D., and Kass, G.V. (1984). [霍金斯位于Bradu,D.M.,,D.,卡斯,G.V.的(1984)。]
# Location of several outliers in multiple regression data using[在多元回归分析数据使用的几个离群的位置]
# elemental sets. Technometrics, 26, 197-208.[元素集。品质管理,26,197-208。]
#[]
data(artificial)
result <- wle.lm(y.artificial~x.artificial,boot=40,num.sol=3)
summary(result)
plot(result)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|