networkScreening(WGCNA)
networkScreening()所属R语言包:WGCNA
Identification of genes related to a trait
一个性状相关基因的鉴定
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function blends standard and network approaches to selecting genes (or variables in general) highly related to a given trait.
此功能结合的方法来选择基因(或一般的变量)给定的特征高度相关标准和网络。
用法----------Usage----------
networkScreening(y, datME, datExpr,
corFnc = "cor", corOptions = "use = 'p'",
oddPower = 3,
blockSize = 1000,
minimumSampleSize = ..minNSamples,
addMEy = TRUE, removeDiag = FALSE,
weightESy = 0.5, getQValues = TRUE)
参数----------Arguments----------
参数:y
clinical trait given as a numeric vector (one value per sample)
临床特征为一个数值向量(每一个值样品)
参数:datME
data frame of module eigengenes
数据框的模块特征基因
参数:datExpr
data frame of expression data
表达数据的数据框
参数:corFnc
character string specifying the function to be used to calculate co-expression similarity. Defaults to Pearson correlation. Any function returning values between -1 and 1 can be used.
指定的功能的字符串被用来计算共表达相似。默认为Pearson相关。任何函数返回-1和1之间的值都可以使用。
参数:corOptions
character string specifying additional arguments to be passed to the function given by corFnc. Use "use = 'p', method = 'spearman'" to obtain Spearman correlation.
字符串指定额外的参数被传递给函数的corFnc。使用"use = 'p', method = 'spearman'"获得Spearman等级相关。
参数:oddPower
odd integer used as a power to raise module memberships and significances
奇整数,用于为动力,以提高模块的成员资格和意义
参数:blockSize
block size to use for calculations with large data sets
块的大小,使用大型数据集的计算
参数:minimumSampleSize
minimum acceptable number of samples. Defaults to the default minimum number of samples used throughout the WGCNA package, currently 4.
最低可接受的数量的样本。默认为整个WGCNA包,目前使用的样品的默认数量。
参数:addMEy
logical: should the trait be used as an additional "module eigengene"?
逻辑:性状应该被用来作为一个附加的“模块eigengene”?
参数:removeDiag
logical: remove the diagonal?
逻辑:删除对角线?
参数:weightESy
weight to use for the trait as an additional eigengene; should be between 0 and 1
使用重量为作为一个额外的eigengene性状;应该是0和1之间的
参数:getQValues
logical: should q-values be calculated?
逻辑:Q值计算出来的?
Details
详细信息----------Details----------
This function should be considered experimental. It takes into account both the "standard" and the network measures of gene importance for the trait.
这个函数应该被认为是实验性的。需要兼顾“标准”的基因为特征的重要性和网络的措施。
值----------Value----------
datout = data.frame(p.Weighted, q.Weighted, Cor.Weighted, Z.Weighted, p.Standard, q.Standard, Cor.Standard, Z.Standard) Data frame reporting the following quantities for each given gene:
DATOUT数据框(p.Weighted,q.Weighted,Cor.Weighted,Z.Weighted,的p.Standard,q.Standard,Cor.Standard,)数据Z.Standard帧报告后,数量,对于每个特定的基因:
参数:p.Weighted
weighted p-value of association with the trait
加权p-值与性状
参数:q.Weighted
q-value (local FDR) calculated from p.Weighted
Q-值(本地FDR)计算从p.Weighted
参数:cor.Weighted
correlation of trait with gene expression weighted by a network term
性状与基因表达相关性加权网络术语
参数:Z.Weighted
Fisher Z score of the weighted correlation
费舍尔Z分数的加权关联
参数:p.Standard
standard Student p-value of association of the gene with the trait
标准的学生p值关联的基因与性状
参数:q.Standard
q-value (local FDR) calculated from p.Standard
Q-值(本地FDR)计算从p.Standard
参数:cor.Standard
correlation of gene with the trait
与性状基因的相关性
参数:Z.Standard
Fisher Z score of the standard correlation
费舍尔标准相关的Z值
(作者)----------Author(s)----------
Steve Horvath
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|