bcl(weightedScores)
bcl()所属R语言包:weightedScores
BIVARIATE COMPOSITE LIKELIHOOD FOR MULTIVARIATE NORMAL COPULA WITH POISSON/BINARY/NB REGRESSION
二元复合多元师范大学COPULA POISSON /二元/ NB回归的似然
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Bivariate composite likelihood for multivariate normal copula with Poisson, binary, or negative binomial regression.
二元复合与泊松多元正态Copula函数,二进制文件,或负二项式回归的可能性。
用法----------Usage----------
bcl(r,b,gam,xdat,ydat,id,tvec,margmodel,corstr,link)
参数----------Arguments----------
参数:r
The vector of normal copula parameters.
向量正常系词参数。
参数:b
The regression coefficients.
回归系数。
参数:gam
The parameter γ of negative binomial distribution. γ is NULL for Poisson and binary regression.
参数γ负二项分布。 γ是NULL泊松分布和二元回归。
参数:xdat
(\mathbf{x}_1 , \mathbf{x}_2 , … , \mathbf{x}_n )^\top, where the matrix \mathbf{x}_i,\,i=1,…,n for a given unit will depend on the times of observation for that unit (j_i) and will have number of rows j_i, each row corresponding to one of the j_i elements of y_i and p columns where p is the number of covariates including the unit first column to account for the intercept. This xdat matrix is of dimension (N\times p), where N =∑_{i=1}^n j_i is the total number of observations from all units.
(\mathbf{x}_1 , \mathbf{x}_2 , … , \mathbf{x}_n )^\top,其中矩阵\mathbf{x}_i,\,i=1,…,n对于一个给定的单元将取决于观察的时间该单元(j_i)和将有j_i,对应每一行的行数j_i元素之一y_i和p列p是共变项包括单位的第一列用于拦截。此的XDAT矩阵是尺寸(N\times p),其中N =∑_{i=1}^n j_i是观测各单位的总数。
参数:ydat
(y_1 , y_2 , … , y_n )^\top, where the response data vectors y_i,\,i=1,…,n are of possibly different lengths for different units. In particular, we now have that y_i is (j_i \times 1), where j_i is the number of observations on unit i. The total number of observations from all units is N =∑_{i=1}^n j_i. The ydat are the collection of data vectors y_i, i = 1,…,n one from each unit which summarize all the data together in a single, long vector of length N.
(y_1 , y_2 , … , y_n )^\top,其中的响应数据矢量y_i,\,i=1,…,n都可能有不同的长度为不同的单位。特别是,我们现在有y_i(j_i \times 1),其中j_i是单位i的若干意见。各单位总数的观测是N =∑_{i=1}^n j_i。 ydat是收集的数据向量y_i, i = 1,…,n总结各单位的所有数据一起在一个很长的向量的长度N。
参数:id
An index for individuals or clusters.
指数为个人或聚类。
参数:tvec
A vector with the time indicator of individuals or clusters.
一个向量的个人或聚类的时间指标。
参数:margmodel
Indicates the marginal model. Choices are “poisson” for Poisson, “bernoulli” for Bernoulli, and “nb1” , “nb2” for the NB1 and NB2 parametrization of negative binomial in Cameron and Trivedi (1998).
表示的边际模式。选项是“泊”泊松,“伯努利”伯努利,和“NB1,NB2”为NB1和NB2参数化的负二项分布卡梅伦和Trivedi(1998)。
参数:corstr
Indicates the latent correlation structure of normal copula. Choices are “exch”, “ar”, and “unstr” for exchangeable, ar(1) and unstructured correlation structure, respectively.
表示潜在的相关的正常系词结构。选择“EXCH”,“AR”,“可换unstr”,AR(1)和非结构化的相关结构,分别。
参数:link
The link function. Choices are “log” for the log link function, “logit” for the logit link function, and “probit” for the probit link function. However, this is an optional argument and needs to be defined only for probit regression.
链接功能。选择“log”的log链接功能,“罗吉”的罗吉特链接功能,和“概率”的概率链接功能。然而,这是一个可选的参数,需要定义概率回归。
值----------Value----------
The negative bivariate composite likelihood for multivariate normal copula with Poisson, binary, or negative binomial regression.
与泊松多元正态Copula函数,二进制文件,或负二项式回归的负面二元复合的可能性。
(作者)----------Author(s)----------
Aristidis K. Nikoloulopoulos <a href="mailto:A.Nikoloulopoulos@uea.ac.uk">A.Nikoloulopoulos@uea.ac.uk</a><br>
Harry Joe <a href="mailto:harry.joe@ubc.ca">harry.joe@ubc.ca</a>
参考文献----------References----------
Zhao, Y. and Joe, H. (2005) Composite likelihood estimation in multivariate data analysis. The Canadian Journal of Statistics, 33, 335–356.
Cameron, A. C. and Trivedi, P. K. (1998) Regression Analysis of Count Data. Cambridge: Cambridge University Press.
Nikoloulopoulos, A.K., Joe, H. and Chaganty, N.R. (2011) Weighted scores method for regression models with dependent data. Biostatistics, 12, 653–665.
参见----------See Also----------
cl1, iee
cl1,iee
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|