mwd(wavethresh)
mwd()所属R语言包:wavethresh
Discrete multiple wavelet transform (decomposition).
离散多小波变换(分解)。
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function performs the discrete multiple wavelet transform (DMWT). Using an adaption of Mallat's pyramidal algorithm. The DMWT gives vector wavelet coefficients.
此功能进行离散多小波变换(DMWT)。使用Mallat的金字塔算法的适应。该DMWT给向量小波系数。
用法----------Usage----------
mwd(data, prefilter.type = "default", filter.type = "Geronimo",
bc ="periodic", verbose = FALSE)
参数----------Arguments----------
参数:data
A vector containing the data you wish to decompose. The length of this vector must be a power of 2 times the dimension of the DMWT (multiplicity of wavelets).
一个向量,包含你想分解的数据。此向量的长度必须的的DMWT维度(多重小波)的功率的2倍。
参数:prefilter.type
This chooses the method of preprocessing required. The arguments will depend on filter.type, but "default" will always work.
这选择所需的预处理的方法。的参数将取决于filter.type的,但“默认”将一如既往地。
参数:filter.type
Specifies which multi wavelet filter to use, The options are "Geronimo" (dimension 2) or "Donovan3" (dimension 3). The latter has not been tested fully and may contain bugs. See the function mfilter.select for further details.
指定多小波滤波器使用的选项是“Geronimo”(2维)或“Donovan3”(3维)。后者并没有被完全测试,并且可能包含错误。请参阅的功能mfilter.select进一步的细节。
参数:bc
specifies the boundary handling. If bc=="periodic" the default, then the function you decompose is assumed to be periodic on its interval of definition, if bc=="symmetric" then the function beyond its boundaries is assumed to be a symmetric reflection of the function in the boundary.
指定的边界处理。如果bc=="periodic"默认值,然后你分解的功能被假定为是周期性的,其时间间隔的定义,如果bc=="symmetric"那么的功能超越它的界限,在边界假设是对称反射的功能, 。
参数:verbose
Controls the printing of "informative" messages whilst the computations progress. Such messages are generally annoying so it is turned off by default.
控制打印的“信息”的消息,而计算的进展。这样的消息一般都是讨厌的,所以它在默认情况下是关闭的。
Details
详细信息----------Details----------
The code implements Mallat's pyramid algorithm adapted for multiple wavelets using Xia, Geronimo, Hardin and Suter, 1996. The method takes a data vector of length 2^J*M, and preprocesses it. This has two effects, firstly it puts the data into matrix form and then filters it so that the DMWT can operate more efficiently Most of the technical details are similar to the single wavelet transform except for the matrix algebra considerations, and the prefiltering process. See Downie and Silverman (1998) for further details and how this transform can be used in a statistical context.
该代码实现Mallat的的金字塔算法适用于多个小波夏,Geronimo中,哈丁和苏特,1996年,。该方法将数据向量的长度2^J*M,并进行预处理。这有两个作用,首先它把成矩阵形式的数据,然后对其过滤,使得可以更有效地运作的DMWT大部分的技术细节单个小波变换除了矩阵代数的考虑,和预过滤过程是类似的。唐尼和Silverman(1998)进一步的细节,以及如何变换可以用在统计范围内。
值----------Value----------
An object of class mwd.
对象的类mwd。
RELEASE----------RELEASE----------
Version 3.9.6 (Although Copyright Tim Downie 1996)
版本3.9.6(版权蒂姆·唐尼1996年虽然)
(作者)----------Author(s)----------
Tim Downie
参见----------See Also----------
accessC.mwd, accessD.mwd, draw.mwd, mfirst.last, mfilter.select, mwd.object, mwr, plot.mwd, print.mwd, putC.mwd, putD.mwd, summary.mwd, threshold.mwd, wd, wr.mwd.
accessC.mwd,accessD.mwd,draw.mwd,mfirst.last,mfilter.select,mwd.object,mwr,plot.mwd,print.mwd,putC.mwd,putD.mwd,summary.mwd,threshold.mwd,wd,wr.mwd。
实例----------Examples----------
#[]
# Generate some test data[生成一些测试数据。]
#[]
test.data <- example.1()$y
## Not run: ts.plot(test.data)[#不运行:ts.plot(test.data)]
#[]
# Decompose test.data with multiple wavelet transform and[多小波变换和分解test.data]
# plot the wavelet coefficients[绘制小波系数]
#[]
tdmwd <- mwd(test.data)
## Not run: plot(tdmwd)[#不运行:图(tdmwd)]
#[1] 1.851894 1.851894 1.851894 1.851894 1.851894 1.851894 1.851894[[1] 1.851894 1.851894 1.851894 1.851894 1.851894 1.851894 1.851894]
#[]
# You should see a plot with wavelet coefficients like in[你应该看到一个图与小波系数,如在]
#\code{\link{plot.wd}} but at each coefficient position[\代码{\的链接{plot.wd}}但是,在每一个系数位置]
# there are two coefficients in two different colours one for each of[在两种不同的颜色有两个系数一个为每一个]
# the wavelets at that position.[小波在该位置。]
#[]
# Note the scale for each level is returned by the function.[请注意每个级别由该函数返回的规模。]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|