InvBasis.wst(wavethresh)
InvBasis.wst()所属R语言包:wavethresh
Invert a wst library representation with a basis specification
反转WST库表示的基础规范
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Inverts a wst basis representation with a given basis specification, for example an output from the MaNoVe function.
反转一个WST的基础表示与一个给定的基础规范,例如从MaNoVe函数的输出。
用法----------Usage----------
## S3 method for class 'wst':
InvBasis(wst, nv, ...)
参数----------Arguments----------
参数:wst
The wst object that you wish to invert
WST对象,你想反转
参数:nv
The node vector, basis spec, that you want to pick out
节点矢量,依据规范,要挑选出
参数:...
Other arguments, that don't do anything here
其他参数,这里什么也不做,
Details
详细信息----------Details----------
Objects arising from a wst.object specification are a representation of a signal with respect to a library of basis functions. A particular basis specification can be obtained using the numtonv function which can pick an indexed basis function, or MaNoVe.wst which uses the Coifman-Wickerhauser minimum entropy method to select a basis. This function takes a wst.object and a particular basis description (in a nv.object node vector object) and inverts the representation with respect to that selected basis.
对象从wst.object规范所产生的信号的表示相对于基函数图书馆。特别是基础规范可以通过使用numtonv功能,可以选择一个索引的基础功能,或MaNoVe.wst使用的Coifman Wickerhauser最低的熵值法选择的基础。这个函数接受一个wst.object和一个特定的的基础描述(在nv.object节点矢量对象)和反转表示到所选的基础。
值----------Value----------
The inverted reconstruction
倒重建
(作者)----------Author(s)----------
G P Nason
参见----------See Also----------
numtonv,nv.object,MaNoVe.wst,threshold.wst,wst
numtonv,nv.object,MaNoVe.wst,threshold.wst,wst
实例----------Examples----------
#[]
# Let's generate a noisy signal[让我们产生噪声信号]
#[]
x <- example.1()$y + rnorm(512, sd=0.2)
#[]
# You can plot this if you like[如果你喜欢,您可以绘制]
#[]
## Not run: ts.plot(x)[#不运行:ts.plot(X)]
#[]
# Now take the nondecimated wavelet transform[现在采取的nondecimated的小波变换]
#[]
xwst <- wst(x)
#[]
# Threshold it[阈值,它]
#[]
xwstT <- threshold(xwst)
#[]
# You can plot this too if you like[您可以绘制这一点,如果你喜欢]
#[]
## Not run: plot(xwstT)[#不运行:图(xwstT)]
#[]
# Now use Coifman-Wickerhauser to get a "good" basis[现在使用夸夫曼Wickerhauser得到一个“好”的基础上]
#[]
xwstTNV <- MaNoVe(xwstT)
#[]
# Now invert the thresholded wst using this basis specification[现在,反转的阈值WST此基础上规范]
#[]
xTwr <- InvBasis(xwstT, xwstTNV)
#[]
# And plot the result, and superimpose the truth in dotted[绘制的结果,并叠加在虚线的真相]
#[]
## Not run: ts.plot(xTwr)[#不运行:ts.plot(xTwr)]
## Not run: lines(example.1()$y, lty=2)[#不运行线(example.1()$ Y,LTY = 2)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|