Thresholding(waveslim)
Thresholding()所属R语言包:waveslim
Wavelet Shrinkage via Thresholding
通过阈值的小波收缩
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Perform wavelet shrinkage using data-analytic, hybrid SURE, manual, SURE, or universal thresholding.
使用的数据分析,混合动力肯定的是,手动的,果不其然,或通用的阈值进行小波收缩。
用法----------Usage----------
da.thresh(wc, alpha = .05, max.level = 4, verbose = FALSE, return.thresh = FALSE)
hybrid.thresh(wc, max.level = 4, verbose = FALSE, seed = 0)
manual.thresh(wc, max.level = 4, value, hard = TRUE)
sure.thresh(wc, max.level = 4, hard = TRUE)
universal.thresh(wc, max.level = 4, hard = TRUE)
universal.thresh.modwt(wc, max.level = 4, hard = TRUE)
参数----------Arguments----------
参数:wc
wavelet coefficients
小波系数
参数:alpha
level of the hypothesis tests
水平的假设检验
参数:max.level
maximum level of coefficients to be affected by threshold
最大电平的系数要由阈值的影响
参数:verbose
if verbose=TRUE then information is printed to the screen
如果verbose=TRUE然后信息被打印在屏幕上
参数:value
threshold value (only utilized in manual.thresh)
阈值(仅利用了manual.thresh)
参数:hard
Boolean value, if hard=F then soft thresholding is used
布尔值,如果hard=F然后软阈值是用来
参数:seed
sets random seed (only utilized in hybrid.thresh)
设置随机数种子(只用在hybrid.thresh)
参数:return.thresh
if return.thresh=TRUE then the vector of threshold values is returned, otherwise the surviving wavelet coefficients are returned
如果return.thresh=TRUE然后矢量阈值,则返回,否则幸存的小波系数将返回
Details
详细信息----------Details----------
An extensive amount of literature has been written on wavelet shrinkage. The functions here represent the most basic approaches to the problem of nonparametric function estimation. See the references for further information.
广泛的大量的文献已经写在小波收缩。这里的功能是最基本的方法问题的非参数函数估计。的详细信息,请参阅参考。
值----------Value----------
The default output is a list structure, the same length as was input, containing only those wavelet coefficients surviving the threshold.
默认的输出是一个列表结构,相同的长度为输入,只包含那些尚存的阈值的小波系数。
(作者)----------Author(s)----------
B. Whitcher (some code taken from R. Todd Ogden)
参考文献----------References----------
An Introduction to Wavelets and Other Filtering Methods in Finance and Economics, Academic Press.
Essential Wavelets for Statistical Applications and Data Analysis, Birkhauser.
Wavelet Methods for Time Series Analysis, Cambridge University Press.
Statistical Modeling by Wavelets, John Wiley \& Sons.
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|