dwpt(waveslim)
dwpt()所属R语言包:waveslim
(Inverse) Discrete Wavelet Packet Transforms
(反)离散小波包变换
译者:生物统计家园网 机器人LoveR
描述----------Description----------
All possible filtering combinations (low- and high-pass) are performed to decompose a vector or time series. The resulting coefficients are associated with a binary tree structure corresponding to a partitioning of the frequency axis.
所有可能的过滤组合(低通和高通)进行分解的向量或时间序列。将所得的系数与对应于在频率轴中的分区的二进制树结构。
用法----------Usage----------
idwpt(y, y.basis)
modwpt(x, wf = "la8", n.levels = 4, boundary = "periodic")
参数----------Arguments----------
参数:x
a vector or time series containing the data be to decomposed. This must be a dyadic length vector (power of 2).
的向量或包含数据的时间序列分解。这必须是一个二元的长度矢量(2的幂)。
参数:wf
Name of the wavelet filter to use in the decomposition. By default this is set to "la8", the Daubechies orthonormal compactly supported wavelet of length L=8 (Daubechies, 1992), least asymmetric family.
的小波滤波器的名称使用在分解。默认情况下,此设置为"la8"的Daubechies正交的紧支撑小波的长度L=8(Daubechies小,1992年),至少不对称的家庭。
参数:n.levels
Specifies the depth of the decomposition. This must be a number less than or equal to log2[length(x)].
指定的深度的分解。这必须是一个小于或等于log2[length(x)]。
参数:boundary
Character string specifying the boundary condition. If boundary=="periodic" the default, then the vector you decompose is assumed to be periodic on its defined interval,<br> if boundary=="reflection", the vector beyond its boundaries is assumed to be a symmetric reflection of itself.
字符串指定的边界条件。如果boundary=="periodic"默认值,则假定矢量分解其定义的时间间隔上是周期性的,<br>请如果boundary=="reflection",超出其边界的矢量假定是一个对称反射本身。
参数:y
Object of S3 class dwpt.
对象的S3类dwpt。
参数:y.basis
Vector of character strings that describe leaves on the DWPT basis tree.
矢量字符的字符串描述上的DWPT的基础树的叶。
Details
详细信息----------Details----------
The code implements the one-dimensional DWPT using the pyramid algorithm (Mallat, 1989).
该代码实现的一维DWPT,使用金字塔算法(Mallat的,1989年)。
值----------Value----------
Basically, a list with the following components
基本上,与以下组件的列表
参数:w?.?
Wavelet coefficient vectors. The first index is associated with the scale of the decomposition while the second is associated with the frequency partition within that level.
小波系数向量。的第一个索引与规模的分解,而第二个是与该水平内的频率分区。
参数:wavelet
Name of the wavelet filter used.
小波滤波器的名称。
参数:boundary
How the boundaries were handled.
的界限如何处理。
(作者)----------Author(s)----------
B. Whitcher
参考文献----------References----------
A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, No. 7, 674-693.
Wavelet Methods for Time Series Analysis, Cambridge University Press.
Adapted Wavelet Analysis from Theory to Software, A K Peters.
参见----------See Also----------
dwt, modwpt, wave.filter.
dwt,modwpt,wave.filter。
实例----------Examples----------
data(mexm)
J <- 4
mexm.mra <- mra(log(mexm), "mb8", J, "modwt", "reflection")
mexm.nomean <- ts(
apply(matrix(unlist(mexm.mra), ncol=J+1, byrow=FALSE)[,-(J+1)], 1, sum),
start=1957, freq=12)
mexm.dwpt <- dwpt(mexm.nomean[-c(1:4)], "mb8", 7, "reflection")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|