找回密码
 注册
查看: 462|回复: 0

R语言 waved包 WaveD()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 16:54:26 | 显示全部楼层 |阅读模式
WaveD(waved)
WaveD()所属R语言包:waved

                                        WaveD
                                         挥挥手

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Performs statistical wavelet deconvolution using Meyer wavelet.
执行统计子波反褶积,采用Meyer小波。


用法----------Usage----------


WaveD(yobs, g = c(1, rep(0, (length(yobs) - 1))), MC = FALSE, SOFT = FALSE, F = find.j1(g, scale(yobs))[2], L = 3, deg = 3, eta = sqrt(6), thr = maxithresh(yobs, g, eta = eta), label = "WaveD")



参数----------Arguments----------

参数:yobs
Sample of f*g + (Gaussian noise), a vector of dyadic length  (i.e. 2^(J-1) where J is the largest resolution level).  Here f is the target function, g is the convolution kernel.
样本f*g+(高斯噪声),矢量并矢长度(即2^(J-1)J是最大分辨率级别)。在这里,f为目标函数,g为卷积核。


参数:g
Sample of g or g +  (Gaussian noise), same length as yobs. The default is the Dirac mass at 0.
样品g或g+(高斯噪声),相同长度的小混混。默认值是狄拉克质量为0。


参数:MC
Option to only return the (fast) translation-invariant WaveD estimate (MC=TRUE) as opposed to the full WaveD output (MC=FALSE, the default),  as described below. MC=TRUE recommended for Monte Carlo simulation.
选项,只返回(快)翻译不变挥手估计,(MC = TRUE),而不是全挥手输出(MC = FALSE,默认值),如下所述。 MC = TRUE建议的Monte Carlo模拟。


参数:SOFT
if SOFT=TRUE, uses the soft thresholding policy as opposed to the hard (SOFT=FALSE, the default).
如果SOFT = TRUE,采用软阈值策略,而不是硬(软= FALSE,默认值)。


参数:F
Finest resolution level; the default is the data-driven choice j1 (see Value below).
最好的分辨率级别,默认为数据驱动的选择J1(见以下值)。


参数:L
Lowest resolution level; the default is 3.
最低分辨率级别,默认为3次。


参数:deg
The degree of the Meyer wavelet, either 1, 2, or 3 (the default).
的程度,Meyer小波,1,2,或3(默认值)。


参数:eta
Tuning parameter of the maxiset threshold; default is √(6).
调整参数的maxiset阈值;默认是√(6)。


参数:thr
A vector of length F-L+1, giving thresholds at each resolution levels  L,L+1,...,F;  default is maxiset threshold.
,在每个分辨率级别的阈值的矢量长度F-L+1L,L+1,...,F;默认是maxiset的阈值。


参数:label
Auxiliary plotting parameter; do not change this.
辅助绘图参数,不改变这一点。


值----------Value----------

In the case that MC=TRUE, WaveD returns a vector consisting of the translation-invariant WaveD estimate. In the case that MC=FALSE (the default), WaveD returns a list with components <table summary="R valueblock"> <tr valign="top"><td>waved</td> <td> translation invariant WaveD transform; in the case MC=TRUE this is all that is returned.</td></tr> <tr valign="top"><td>ordinary</td> <td> ordinary WaveD transform</td></tr> <tr valign="top"><td>FWaveD</td> <td> Forward WaveD Transform; see FWaveD.</td></tr> <tr valign="top"><td>w</td> <td> alternate name for FWaveD</td></tr> <tr valign="top"><td>w.thr</td> <td> thresholded version of w</td></tr> <tr valign="top"><td>IWaveD</td> <td> Inverse WaveD Transform</td></tr> <tr valign="top"><td>iw</td> <td> alternate name for IWaveD</td></tr> <tr valign="top"><td>s</td> <td> estimate of the noise standard deviation</td></tr> <tr valign="top"><td>j1</td> <td> estimate of optimal resolution level (for maxiset threshold).</td></tr> <tr valign="top"><td>F</td> <td> Fine resolution level used (may be different to j1).</td></tr> <tr valign="top"><td>M</td> <td> estimate of optimal Fourier frequency (for maxiset threshold).</td></tr> <tr valign="top"><td>thr</td> <td> vector of thresholds used (default is maxiset threshold).</td></tr> <tr valign="top"><td>percent</td> <td> percentage of thresholding per resolution level</td></tr> <tr valign="top"><td>noise</td> <td> noise proxy, wavelet coefficients of the raw data at the largest resolution level, used for estimating noise features.</td></tr> <tr valign="top"><td>ps</td> <td> P-value of the Shapiro-Wilk test for normality applied to the noise proxy.</td></tr> <tr valign="top"><td>residuals</td> <td> wavelet coefficients that have been removed before fine level F.</td></tr> </table>
在MC = TRUE的情况下,挥手返回向量的平移不变性挥手估计。在的情况下,MC = FALSE(默认值),挥挥手,返回一个列表的组件<table summary="R valueblock"> <tr valign="top"> <TD> waved</ TD> <TD>平移不变挥手变换的情况下MC = TRUE,则返回。</ TD> </ TR> <tr valign="top"> <TD> ordinary </ TD> <TD>普通挥手变换</ TD> </ TR> <tr valign="top"> <TD>FWaveD</ TD> <TD>正向挥手变换;看到FWaveD。</ TD> </ TR> <tr valign="top"> <TD>w </ TD> <TD>备用名称FWaveD </ TD> </ TR> <tr valign="top"> <TD> X> </ TD> <TD>阈值版本的W </ TD> </ TR> <tr valign="top"> <TD>w.thr </ TD> <TD>反挥手变换</ TD> </ TR> <tr valign="top"> <TD>IWaveD </ TD> <TD>备用名称IWaveD </ TD> </ TR> <tr valign="top"> < iw TD> </ TD> <TD>估计的噪声标准差</ TD> </ TR> <tr valign="top"> <TD>s </ TD> <TD估计最佳分辨率(为maxiset阈值)。</ TD> </ TR> <tr valign="top"> <TD>j1 </ TD> <TD>精细分辨率水平(可能是不同的J1)。</ TD> </ TR> <tr valign="top"> <TD>F </ TD> <TD>估计的最佳傅立叶频率(为maxiset的阈值)。</ TD > </ TR> <tr valign="top"> <TD>M </ TD> <TD>矢量的阈值(默认是maxiset的阈值的)。</ TD> </ TR> <TR VALIGN =“”> <TD> thr </ TD> <TD>每分辨率级别的阈值百分比</ TD> </ TR> <tr valign="top"> <TD> percent <TD>噪声代理,小波系数最大分辨率级别的原始数据,用于估计噪声功能</ TD> </ TD> </ TR> <tr valign="top"> <TD><X > </ TD> <TD> P-Shapiro-Wilk检验正常的噪声代理。</ TD> </ TR> <tr valign="top"> <TD>noise </ TD> <TD>已被删除之前精细程度的小波系数,F. </ TD> </ TR> </ TABLE>


(作者)----------Author(s)----------


Marc Raimondo and Michael Stewart



参考文献----------References----------

Cavalier, L. and Raimondo, M.  (2007), &lsquo;Wavelet deconvolution with noisy eigen-values&rsquo;,  IEEE Trans. Signal Process, Vol. 55(6), In the press.
Donoho, D. and Raimondo, M.  (2004), &lsquo;Translation invariant deconvolution in a periodic setting&rsquo;,  The International Journal of Wavelets, Multiresolution and Information Processing 14(1),415&ndash;423.
Johnstone, I., Kerkyacharian, G., Picard, D. and Raimondo, M.  (2004),  'Wavelet deconvolution in a periodic setting',  Journal of the Royal Statistical Society, Series B  66(3),547&ndash;573.  with discussion pp.627&ndash;652.
Raimondo, M. and Stewart, M. (2007),

参见----------See Also----------

FWaveD
FWaveD


实例----------Examples----------


library(waved)
data=waved.example(TRUE,FALSE)
doppler.wvd=WaveD(data$doppler.noisy,data$g)
summary(doppler.wvd)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-25 20:41 , Processed in 0.024732 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表