cluster.visualize(ChemmineR)
cluster.visualize()所属R语言包:ChemmineR
visualize clustering result using multi-dimensional scaling
使用多维缩放可视化的聚类结果
译者:生物统计家园网 机器人LoveR
描述----------Description----------
'cluster.visualize' takes clustering result returned by 'cmp.cluster' and generate multi-dimensional scaling plot for visualization purpose.
“cluster.visualize聚类结果由”cmp.cluster返回和生成多维可视化的目的缩放图。
用法----------Usage----------
cluster.visualize(db, cls, size.cutoff, distmat=NULL, color.vector=NULL, non.interactive="", cluster.result=1, dimensions=2, quiet=FALSE, highlight.compounds=NULL, highlight.color=NULL, ...)
参数----------Arguments----------
参数:db
The desciptor database, in the format returned by 'cmp.parse'.
返回的desciptor数据库格式,cmp.parse“。
参数:cls
The clustering result returned by 'cmp.cluster'.
聚类结果返回cmp.cluster。
参数:size.cutoff
The cutoff size for clusters considered in this visualization. Clusters of size smaller than the cutoff will not be considered.
截止认为在这个可视化的聚类规模。大小小于截止聚类将不予考虑。
参数:distmat
A distance matrix that corresponds to the 'db'. If not provided, it will be computed on-the-fly in an efficient manner.
距离矩阵对应的“DB”。如果不提供,将计算上的动态,以有效的方式。
参数:color.vector
Colors to be used in the plot. If the number of colors in the vector is not enough for the plot, colors will be reused. If not provided, color will be generated and randomly sampled from 'rainbow'.
将在图中使用的颜色。如果是不足够的图色彩的向量数量,颜色会被重用。如果不提供,颜色会产生,并从“彩虹”随机抽样。
参数:non.interactive
If provided, will enable the non-interactive mode, and the plot will be in an eps file named after this value.
如果提供的话,将使非交互模式,该图将在后这个值命名为EPS文件。
参数:cluster.result
Used to select the clustering result if multiple clustering results are present in 'cls'.
用于选择多个聚类结果的聚类结果,如果是在“CLS”。
参数:dimensions
Dimensionality to be used in visualization. See details.
要使用可视化的维度。查看详情。
参数:quiet
Whether to supress the progress bar.
是否写出的进度条。
参数:highlight.compounds
A vector of compound IDs, corresponding to compounds to be highlighted in the plot. A highlighted compound is represented as a filled circle.
向量的复合标识,相应的化合物中的图突出。一个突出的化合物作为填充的圆表示。
参数:highlight.color
Color used for highlighted compounds. If not set, a highlighted compounds will have the same color as that used for other compounds in the same cluster.
使用的颜色突出的化合物。如果没有设置,一个突出的化合物将具有相同的颜色,使用同一个聚类中的其他化合物。
参数:...
Further arguments will be passed to 'cmp.similarity' to calculate similarity matrix.
将通过进一步论据“cmp.similarity来计算相似矩阵。
Details
详情----------Details----------
'cluster.visualize' internally calls the 'cmdscale' function to generate a set of points in 2-D for the compounds in selected clusters. Note that for compounds in clusters smaller than the cutoff size, they will not be considered in this calculation - their entries in 'distmat' will be discarded if 'distmat' is provided, and distances involving them will not be computed if 'distmat' is not provided.
“cluster.visualize内部调用的”cmdscale功能在选定簇化合物的生成点的2-D组。注意:在聚类比截止规模小的化合物,它们将不被视为在这个计算 - 在“distmat他们的作品将被丢弃如果distmat提供的,以及涉及他们不会被距离如果”distmat是计算没有提供。
To determine the value for 'size.cutoff', you can use 'cluster.sizestat' to see the size distribution of clusters.
为了确定值size.cutoff,你可以使用cluster.sizestat看到的簇的大小分布。
Because 'cmp.cluster' function allows you to perform multiple clustering processes simultaneously with different cutoff values, the 'cls' parameter may point to a data frame containing multiple clustering results. The user can use 'cluster.result' to specify which result to use. By default, this is set to 1, and the first clustering result will be used in visualization. Whatever the value is, in interactive mode (described below), all clustering result will be displayed when a compound is selected in the interactive plot.
因为“cmp.cluster”功能,让你同时执行多个不同的临界值聚类过程,“CLS”参数可以指向一个数据框包含多个聚类结果。用户可以使用“cluster.result”指定使用的结果。默认情况下,这是设置为1,将使用可视化的聚类结果。无论价值,在互动模式(如下所述),所有的聚类结果将显示在互动的图中选择一种化合物时。
If the colors provided in 'color.vector' are not enough to distinguish clusters by colors, the function will silently reuse the colors, resulting multiple clusters colored in the same color. We suggest you use 'cluster.sizestat' to see how many clusters will be selected using your 'size.cutoff', or simply provide no 'color.vector'.
如果color.vector“提供的颜色是不够的颜色来区分聚类,功能会默默重用的颜色,导致在相同颜色的彩色多个聚类。我们建议您使用“cluster.sizestat看到许多聚类将如何使用你的size.cutoff”,或者干脆提供没有color.vector“被选中。
If 'non.interative' is not set, the final plot is interactive. You will be able to select points by clicking them. When you click on any point, information about the compound represented by that point will be displayed. This includes the cluster ID, cluster size, compound index in the SDF and compound name if any. You can then perform another selection. To exit this process, right click on X11 device or press ESC in non-X11 device (Quartz and Windows).
如果没有设置“non.interative,最后的图是互动的。您将可以选择通过点击他们点。当你点击任何一点上,关于这一点所代表的化合物的信息将被显示。这包括聚类ID,簇的大小,在自卫队和化合物的名称,如果没有,复合索引。然后,您可以执行另一个选择。要退出此过程中,右击X11的设备,或在非X11的设备按ESC(石英和Windows)。
By default, 'dimensions' is set to 2, and the built-in 'plot' function will be used for plotting. If you need to do 3-Dimensional plotting, set 'dimensions' to 3, and pass the returned value to 3D plot utilities, such as 'scatterplot3d' or 'rggobi'. This package does not perform 3D plot on its own.
默认情况下,“尺寸”设置为2,和内置的“图”功能将被绘制的。如果你需要做的3维绘图,设置3“尺寸”,3D绘图工具,如“scatterplot3d或rggobi,通过返回值。这个软件包没有履行自己的3D绘图。
值----------Value----------
This function returns a data frame of MDS coordinates and clustering result. This value can be passed to 3D plot utilities such as 'scatterplot3d' and 'rggobi'.
这个函数返回一个MDS的坐标数据框和聚类结果。这个值可以通过3D绘图实用程序,如“scatterplot3d和rggobi。
The last column of the output gives whether the compounds have been clicked in the interactive mode.
输出的最后一列给出的化合物是否已被点击的互动模式。
作者(S)----------Author(s)----------
Y. Eddie Cao
参见----------See Also----------
cmp.parse, cmp.cluster, cluster.sizestat
cmp.parse,cmp.cluster,cluster.sizestat
举例----------Examples----------
## Load sample SD file[#负载样品的SD文件]
# data(sdfsample); sdfset <- sdfsample[数据(sdfsample); sdfset < - sdfsample]
## Generate atom pair descriptor database for searching[#生成原子对数据库搜索描述]
# apset <- sdf2ap(sdfset) [< - sdf2ap apset(sdfset)]
## Loads same atom pair sample data set provided by library[#加载相同的原子对样本数据集,由图书馆提供]
data(apset)
db <- apset
## cluster db with 2 cutoffs[#聚类DB 2截止]
clusters <- cmp.cluster(db, cutoff=c(0.5, 0.4))
## Return size stats[#返回规模统计]
sizestat <- cluster.sizestat(clusters)
## Visualize results, using a cutoff of 3, write to file 'test.eps'[#可视化的结果,使用截止3,写提交test.eps]
coord <- cluster.visualize(db, clusters, 2, non.interactive="test.eps")
## Not run: [#无法运行:]
## visualize it in interactive mode, using a cutoff of 3 and the 2nd clustering result[#可视化交互模式,使用截止3和第2的聚类结果]
coord <- cluster.visualize(db, clusters, cluster.result=2, 3)
## 3D visualization with scatterplot3d[#三维可视化与scatterplot3d]
coord <- cluster.visualize(db, clusters, 3, dimensions=3)
library(scatterplot3d)
scatterplot3d(coord)
## End(Not run)[#结束(不运行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|