vineFit(vines)
vineFit()所属R语言包:vines
Vine Inference
藤推理
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Estimate a vine model from multivariate data in the unit hypercube. Data can be pseudo-observations constructed from empirical or parametric marginal cumulative distribution functions.
在单位超立方体多元数据的藤蔓模型估计。数据可以是伪观测从经验或参数的边际累积分布函数构成的。
用法----------Usage----------
vineFit(type, data, method = "ml", ...)
参数----------Arguments----------
参数:type
Type of vine. Supported values: "CVine" and "DVine".
藤本植物的类型。支持的值:"CVine"和"DVine"。
参数:data
Data matrix of pseudo-observations.
矩阵数据的伪观察。
参数:method
Inference method. Supported values: "ml" (Maximum Likelihood).
推理方法。支持的值:"ml"(最大似然)。
参数:...
Additional arguments for the inference method.
其他参数的推理方法。
Details
详细信息----------Details----------
The "ml" (Maximum Likelihood) method starts with the sequential estimation procedure described in (Aas et al., 2009) and then executes a numerical maximization of the full log-likelihood of the vine. The sequential procedure is used to determine the family and the initial values of the parameters of each bivariate copula in the decomposition. Additional arguments for this method are:
"ml"(最大似然)方法启动的顺序估计(AAS等,2009年)中描述的程序,然后执行一个数值最大化的完整记录的藤本植物的可能性。的顺序的程序是用来确定家庭和的参数的初始值,在分解每个二元系词。此方法的其他参数:
selectCopula Function provided by the user to select the copulas in the pair-copula construction. This function should return a copula object and expect the following arguments.
selectCopula功能,由用户选择对Copula的建设中的Copula函数。这个函数应该返回一个copula对象,并期待下面的参数。
vine Vine object being constructed.
vine藤对象正在建设中。
j, i Indexes of the copula under selection in the matrix of the
j, i指标Copula函数的选择在基体中的
x, y Bivariate sample.
x, y二元样品。
The default value is function (vine, j, i, x, y) indepCopula()
默认值是function (vine, j, i, x, y) indepCopula()
trees Maximum number of dependence trees of the vine. Independence copulas will be used in all the arcs of the following trees. The final number of dependence trees could be smaller because of the use of a truncation method.
trees的最大数量的依赖树的藤蔓。独立Copula函数将被用在以下的树木的所有弧。的依赖树的最终数目可能是较小的,因为使用的截断方法。
truncMethod Method used to automatically truncate the vine if enough dependence is captured in a given number of trees. Supported methods are "AIC" and "BIC". See (Brechmann, 2010; Brechmann et al., 2010) for information about these methods. The default value is "" that
truncMethod方法用于自动截断藤,如果有足够的依赖性被捕获在一个给定数目的树木。支持的方法是"AIC"和"BIC"。有关这些方法的信息,请参阅(Brechmann,2010年Brechmann等人,2010)。默认值是""
optimMethod optim method used in the optimization of the log-likelihood function. If "" is specified the optimization is disabled and the vine calculated using the sequential estimation procedure
optimMethodoptim的对数似然函数的优化方法。如果""指定的优化被禁用,使用顺序估计方法计算出的葡萄树
optimControl List of control parameters for optim.
optimControl列表的控制参数optim。
值----------Value----------
A vineFit object or a subclass with specific information about inference method used. The vine slot of this object contains the fitted Vine object.
AvineFit对象的一个子类所使用的推理方法的具体信息。 vine插槽,这个对象的包含的拟合Vine对象的。
参考文献----------References----------
Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics 44, 182–198.
and their applications. Diploma thesis. Technische Universit盲t M眉nchen.
vines in high dimensions with application to financial data. Norwegian Computing Center, NR. Note SAMBA/60/10.
参见----------See Also----------
CVine, DVine, vineFit, vineFitML.
CVine,DVine,vineFit,vineFitML。
实例----------Examples----------
data <- matrix(runif(5 * 100), ncol = 5, nrow = 100)
colnames(data) <- c("A", "B", "C", "D", "E")
selectCopula <- function (vine, j, i, x, y) {
data <- cbind(x, y)
fit <- fitCopula(normalCopula(0), data, method = "itau")
fit@copula
}
fit <- vineFit("DVine", data, method = "ml",
selectCopula = selectCopula,
optimMethod = "")
show(fit)
show(fit@vine)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|