找回密码
 注册
查看: 489|回复: 0

R语言 VineCopula包 RVineVuongTest()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 16:12:37 | 显示全部楼层 |阅读模式
RVineVuongTest(VineCopula)
RVineVuongTest()所属R语言包:VineCopula

                                        Vuong test comparing two R-vine copula models
                                         王测试比较两个R-藤Copula函数模型

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This function performs a Vuong test between two d-dimensional R-vine copula models as specified by their RVineMatrix objects.
这个函数执行Vuong的测试两d维的R-RVineMatrix对象所指定的藤Copula函数模型。


用法----------Usage----------


RVineVuongTest(data, RVM1, RVM2)



参数----------Arguments----------

参数:data
An N x d data matrix (with uniform margins).  
一个N×d数据矩阵(均匀的利润)。


参数:RVM1, RVM2
RVineMatrix objects of models 1 and 2.
RVineMatrix对象模型1和2。


Details

详细信息----------Details----------

The likelihood-ratio based test proposed by Vuong (1989) can be used for comparing non-nested models. For this let c_1 and c_2 be two competing vine copulas in terms of their densities and with estimated parameter sets θ_1 and θ_2. We then compute the standardized sum, ν, of the log differences of their  pointwise likelihoods m_i:=log[c_1(u_i|θ_1) / c_2(u_i|θ_2) ] for observations u_i in [0,1],i=1,...,N , i.e.,
者Vuong的(1989)提出的基于似然比测试,可以使用非嵌套模型进行比较。这让c_1和c_2是两个相互竞争的藤Copula函数,其密度和估计的参数设置θ_1和θ_2。然后,我们计算规范的总和,ν“的log差异的逐点似然m_i:=log[c_1(u_i|θ_1) / c_2(u_i|θ_2) ]的观测u_i in [0,1],i=1,...,N,即,

Vuong (1989) shows that ν is asymptotically standard normal. According to the null-hypothesis
王街(1989)ν渐近标准正常。根据零假设

we hence prefer vine model 1 to vine model 2 at level α if
因此,我们更喜欢藤模型1模型2藤级α,如果

where &Phi;^{-1} denotes the inverse of the standard normal distribution function. If &nu;<-&Phi;^{-1}(1-&alpha;/2) we choose model 2.  If, however, |&nu;| <= &Phi;^{-1}(1-&alpha;/2), no decision among the models is possible.
&Phi;^{-1}表示标准正态分布函数的逆。如果&nu;<-&Phi;^{-1}(1-&alpha;/2)的“我们选择模式2。然而,如果|&nu;| <= &Phi;^{-1}(1-&alpha;/2),模型之间没有决定是可能的。

Like AIC and BIC, the Vuong test statistic may be corrected for the number of parameters used in the models. There are two possible corrections;  the Akaike and the Schwarz corrections, which correspond to the penalty terms in the AIC and the BIC, respectively.
喜欢AIC和BIC,王的检验统计量可以校正为在模型中使用的参数的数目。有两种可能的改正;的Akaike和施瓦茨更正,这对应于在AIC和BIC的惩罚项,分别。


值----------Value----------


参数:statistic, statistic.Akaike, statistic.Schwarz
Test statistics without correction, with Akaike correction and with Schwarz correction.
测试统计数据未经修正,与赤池的校正和与施瓦茨校正。


参数:p.value, p.value.Akaike, p.value.Schwarz
P-values of tests without correction, with Akaike correction and with Schwarz correction.
P值的测试,而无需校正,与赤池校正与施瓦茨校正。


(作者)----------Author(s)----------


Jeffrey Dissmann, Eike Brechmann



参考文献----------References----------

Ratio tests for model selection and non-nested hypotheses. Econometrica 57 (2), 307-333.

参见----------See Also----------

RVineClarkeTest, RVineAIC, RVineBIC
RVineClarkeTest,RVineAIC,RVineBIC


实例----------Examples----------


# define first 5-dimensional RVineMatrix object[第一个定义的5维RVineMatrix,对象]
Matrix1 = c(5,2,3,1,4,0,2,3,4,1,0,0,3,4,1,0,0,0,4,1,0,0,0,0,1)
Matrix1 = matrix(Matrix1,5,5)

family1 = c(0,1,3,4,4,0,0,3,4,1,0,0,0,4,1,0,0,0,0,3,0,0,0,0,0)
family1 = matrix(family1,5,5)

par1 = c(0,0.2,0.9,1.5,3.9,0,0,1.1,1.6,0.9,0,0,0,1.9,0.5,
         0,0,0,0,4.8,0,0,0,0,0)
par1 = matrix(par1,5,5)

RVM1 = RVineMatrix(Matrix=Matrix1,family=family1,par=par1,
                   par2=matrix(0,5,5),names=c("V1","V2","V3","V4","V5"))
                  
# define second 5-dimensional RVineMatrix object[第二个定义的5维RVineMatrix,对象]
Matrix2 = c(5,4,3,2,1,0,4,3,2,1,0,0,3,2,1,0,0,0,2,1,0,0,0,0,1)
Matrix2 = matrix(Matrix2,5,5)

family2 = c(0,3,1,3,2,0,0,1,5,3,0,0,0,2,3,0,0,0,0,1,0,0,0,0,0)
family2 = matrix(family2,5,5)

par2 = c(0,0.8,0.3,1.5,0.8,0,0,-0.4,1.6,1.2,0,0,0,-0.4,1.5,
         0,0,0,0,0.6,0,0,0,0,0)
par2 = matrix(par2,5,5)

nu2 = c(0,0,0,0,5,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0)
nu2 = matrix(nu2,5,5)

RVM2 = RVineMatrix(Matrix=Matrix2,family=family2,par=par2,par2=nu2,
                   names=c("V1","V2","V3","V4","V5"))                  

# simulate a sample of size 300 from the first R-vine copula model[从第一个R-藤Copula模型模拟样品的尺寸为300]
simdata = RVineSim(300,RVM1)

# compare the two models based on this sample[比较这两种模型基于此示例]
vuong = RVineVuongTest(simdata,RVM1,RVM2)
vuong$statistic
vuong$statistic.Schwarz
vuong$p.value
vuong$p.value.Schwarz

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-26 06:48 , Processed in 0.020596 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表