RVineSeqEst(VineCopula)
RVineSeqEst()所属R语言包:VineCopula
Sequential estimation of an R-vine copula model
R-藤Copula模型的序贯估计
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function sequentially estimates the pair-copula parameters of a d-dimensional R-vine copula model as specified by the corresponding RVineMatrix object.
此功能顺序的一个d维的R-藤copula模型估计对Copula函数的参数指定的相应的RVineMatrix对象。
用法----------Usage----------
RVineSeqEst(data, RVM, method="mle", se=FALSE, max.df=30,
max.BB=list(BB1=c(5,6),BB6=c(6,6),BB7=c(5,6),BB8=c(6,1)),
progress=FALSE)
参数----------Arguments----------
参数:data
An N x d data matrix (with uniform margins).
一个N×d数据矩阵(均匀的利润)。
参数:RVM
An RVineMatrix object including the structure, the pair-copula families and the pair-copula parameters (if they are known).
RVineMatrix对象包括结构,对Copula的家庭,和对Copula函数的参数(如果他们知道的话)。
参数:method
Character indicating the estimation method: either pairwise maximum likelihood estimation (method = "mle"; default) or inversion of Kendall's tau (method = "itau"; see BiCopEst. For method = "itau" only one parameter pair-copula families can be used (family = 1, 3, 4, 5, 6, 13, 14, 16, 23, 24, 26, 33, 34 or 36).
字符表示的估算方法:无论是成对最大似然估计(method = "mle";默认)或反转Kendall的tau(method = "itau"见BiCopEst。对于method = "itau"只有一个参数对Copula的家庭都可以使用(family = 1,3,4,5,6,13,14,16,23,24,26,33,34或36)。
参数:se
Logical; whether standard errors are estimated (default: se=FALSE).
逻辑,是否估计标准误差(默认:se=FALSE)。
参数:max.df
Numeric; upper bound for the estimation of the degrees of freedom parameter of the t-copula (default: max.df = 30; for more details see BiCopEst).
数字;上界估计的程度自由的t-Copula函数的参数(默认值:max.df = 30;更多详细信息,请参阅BiCopEst)。
参数:max.BB
List; upper bounds for the estimation of the two parameters (in absolute values) of the BB1, BB6, BB7 and BB8 copulas <br> (default: max.BB = list(BB1=c(5,6),BB6=c(6,6),BB7=c(5,6),BB8=c(6,1))).
名单;(绝对值),BB1,BB6,BB7和BB8 Copula函数的两个参数的估计上限为参考(默认:max.BB = list(BB1=c(5,6),BB6=c(6,6),BB7=c(5,6),BB8=c(6,1)))。
参数:progress
Logical; whether the pairwise estimation progress is printed (default: progress = FALSE).
逻辑是否成对的估计进度打印(默认:progress = FALSE)。
Details
详细信息----------Details----------
The pair-copula parameter estimation is performed tree-wise, i.e., for each R-vine tree the results from the previous tree(s) are used to calculate the new copula parameters using BiCopEst.
对Copula函数参数估计,每个R-葡萄树树明智的,即从以前的树(S)的结果被用来计算新的Copula函数的参数使用BiCopEst,。
值----------Value----------
参数:RVM
RVineMatrix object with the sequentially estimated parameters stored in RVM$par and RVM$par2.
RVineMatrix对象的顺序估计的参数存储在RVM$par和RVM$par2。
参数:se
Lower triangular d x d matrix with estimated standard errors of the (first) pair-copula parameters for each (conditional) pair defined in the RVineMatrix object (if se = TRUE).
DXD下三角矩阵(第一)对RVineMatrix对象中定义的每个(有条件的)对Copula函数的参数估计标准误差(如果se = TRUE)。
参数:se2
Lower triangular d x d matrix with estimated standard errors of the second parameters for pair-copula families with two parameters for each (conditional) pair defined in the RVineMatrix object (if se = TRUE).
下三角DXD矩阵的对Copula的家庭的第二个参数的估计标准误差RVineMatrix对象中定义的每个(有条件的)对两个参数(如果se = TRUE)。
(作者)----------Author(s)----------
Ulf Schepsmeier, Jeffrey Dissmann
参见----------See Also----------
BiCopEst, BiCopHfunc, RVineLogLik, RVineMLE, RVineMatrix
BiCopEst,BiCopHfunc,RVineLogLik,RVineMLE,RVineMatrix
实例----------Examples----------
# define 5-dimensional R-vine tree structure matrix[定义5维的R-葡萄树结构矩阵]
Matrix = c(5,2,3,1,4,0,2,3,4,1,0,0,3,4,1,0,0,0,4,1,0,0,0,0,1)
Matrix = matrix(Matrix,5,5)
# define R-vine pair-copula family matrix[定义R-藤对Copula的家庭矩阵]
family = c(0,1,3,4,4,0,0,3,4,1,0,0,0,4,1,0,0,0,0,3,0,0,0,0,0)
family = matrix(family,5,5)
# define R-vine pair-copula parameter matrix[定义R-藤对Copula函数的参数矩阵]
par = c(0,0.2,0.9,1.5,3.9,0,0,1.1,1.6,0.9,0,0,0,1.9,0.5,
0,0,0,0,4.8,0,0,0,0,0)
par = matrix(par,5,5)
# define second R-vine pair-copula parameter matrix[定义第二个R-藤对Copula函数的参数矩阵]
par2 = matrix(0,5,5)
# define RVineMatrix object[定义RVineMatrix对象]
RVM = RVineMatrix(Matrix=Matrix,family=family,par=par,par2=par2,
names=c("V1","V2","V3","V4","V5"))
# simulate a sample of size 300 from the R-vine copula model[从R-藤copula模型,模拟样品的尺寸为300]
simdata = RVineSim(300,RVM)
# sequential estimation[序贯估计]
RVineSeqEst(simdata,RVM,method="itau",se=TRUE)
RVineSeqEst(simdata,RVM,method="mle",se=TRUE)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|