找回密码
 注册
查看: 397|回复: 0

R语言 VineCopula包 BiCopChiPlot()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 16:08:45 | 显示全部楼层 |阅读模式
BiCopChiPlot(VineCopula)
BiCopChiPlot()所属R语言包:VineCopula

                                        Chi-plot for bivariate copula data
                                         智积二元Copula的数据

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This function creates a chi-plot of given bivariate copula data.
这个函数创建一个图给定的二元Copula的数据卡。


用法----------Usage----------


BiCopChiPlot(u1, u2, PLOT=TRUE, mode="NULL", ...)



参数----------Arguments----------

参数:u1,u2
Data vectors of equal length with values in [0,1].
数据向量长度相等的值在[0,1]。


参数:PLOT
Logical; whether the results are plotted. If PLOT = FALSE, the values lambda, chi and control.bounds are returned (see below; default: PLOT = TRUE).
逻辑;结果是否绘制。如果PLOT = FALSE,值lambda,chi和control.bounds返回(见下文;默认:PLOT = TRUE)。


参数:mode
Character; whether a general, lower or upper chi-plot is calculated. Possible values are mode = "NULL", "upper" and  "lower". <br> "NULL" = general chi-plot (default)<br> "upper" = upper chi-plot<br> "lower" = lower chi-plot
字符,无论是一般情况下,降低或计算上的卡图。可能的值mode = "NULL","upper"和"lower"。参考"NULL" =通用卡的图(默认)参考"upper"=上智积<BR>"lower"=低智积


参数:...
Additional plot arguments.
其他图参数。


Details

详细信息----------Details----------

For observations u_{i,j}, i=1,...,N, j=1,2, the chi-plot is based on the following two quantities: the chi-statistics
的观测u_{i,j}, i=1,...,N, j=1,2,卡图是基于如下的两个量:卡统计

and the lambda-statistics
和λ-统计

where F_{U_1}, F_{U_2} and F_{U_1U_2} are the empirical distribution functions of the uniform random variables U_1 and U_2 and of (U_1,U_2), respectively. Further, tildeF_{U_1}=F_{U_1}-0.5 and tildeF_{U_2}=F_{U_2}-0.5.
其中F_{U_1},F_{U_2}和F_{U_1U_2}是均匀分布的随机变量U_1和U_2和(U_1,U_2),经验分布函数的。此外,tildeF_{U_1}=F_{U_1}-0.5和tildeF_{U_2}=F_{U_2}-0.5。

These quantities only depend on the ranks of the data and are scaled to the interval [0,1]. &lambda;_i measures a distance of a data point (u_{i,1},u_{i,2}) to the center of the bivariate data set, while &chi;_i corresponds to a correlation coefficient between dichotomized values of U_1 and U_2. Under independence it holds that &chi;_i~N(0,1/N) and &lambda;_i~U[0,1] asymptotically, i.e., values of &chi;_i close to zero indicate independence&mdash;corresponding to F_{U_1U_2}=F_{U_1}F_{U_2}.
这些数量仅依赖的数据的行列,并缩放的时间间隔[0,1]。 &lambda;_i测量数据点(u_{i,1},u_{i,2})的二元数据集的中心的距离,而&chi;_i对应二分法U_1和<X的值之间的相关系数>。在独立认为这U_2和&chi;_i~N(0,1/N)渐近,即,值&lambda;_i~U[0,1]接近于零表明独立对应的&chi;_i。

When plotting these quantities, the pairs of (&lambda;_i,&chi;_i) will tend to be located above zero for positively dependent margins and vice versa for negatively dependent margins. Control bounds around zero indicate whether there is significant dependence present.
当绘制这些量,对(&lambda;_i,&chi;_i)将趋于上方为零,利润为负相关正依赖的利润,反之亦然。在零附近的控制界限是否有显着的依赖,目前。

If mode = "lower" or "upper", the above quantities are calculated only for those u_{i,1}'s and u_{i,2}'s which are smaller/larger than the respective means of u1=(u_{1,1},...,u_{N,1}) and u2=(u_{1,2},...,u_{N,2}).
如果mode = "lower"或"upper",上述数量是仅用于计算这些u_{i,1}s和u_{i,2}的是小于/大于各自的装置u1  =(u_{1,1},...,u_{N,1})和的u2“=(u_{1,2},...,u_{N,2})。


值----------Value----------


参数:lambda
Lambda-statistics (x-axis).
λ-统计量(x轴)。


参数:chi
Chi-statistics (y-axis).
智统计(y轴)。


参数:control.bounds
A 2-dimensional vector of bounds ((1.54/&radic;{n},-1.54/&radic;{n}), where n is the length of u1 and where the chosen values correspond to an approximate significance level of 10%.
界甲2维向量((1.54/&radic;{n},-1.54/&radic;{n}),其中n是u1的长度,以及其中所选择的值对应于近似为10%的显着性水平。


(作者)----------Author(s)----------


Natalia Belgorodski, Ulf Schepsmeier



参考文献----------References----------

A simple graphical method to explore tail-dependence in stock-return pairs. Discussion Paper, University of Konstanz, Germany.
Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12 (4), 347-368.

参见----------See Also----------

BiCopMetaContour, BiCopKPlot, BiCopLambda
BiCopMetaContour,BiCopKPlot,BiCopLambda


实例----------Examples----------


# chi-plots for bivariate Gaussian copula data[二元高斯Copula的数据卡图]
n = 500
tau = 0.5

# simulate copula data[模拟Copula的数据]
fam = 1       
theta = BiCopTau2Par(fam,tau)
dat = BiCopSim(n,fam,theta)       

# create chi-plots[创建卡图]
dev.new(width=16,height=5)
par(mfrow=c(1,3))
BiCopChiPlot(dat[,1],dat[,2],xlim=c(-1,1),ylim=c(-1,1),
             main="General chi-plot")
BiCopChiPlot(dat[,1],dat[,2],mode="lower",xlim=c(-1,1),
             ylim=c(-1,1),main="Lower chi-plot")
BiCopChiPlot(dat[,1],dat[,2],mode="upper",xlim=c(-1,1),
             ylim=c(-1,1),main="Upper chi-plot")

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-26 07:31 , Processed in 0.021424 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表