vmGUImenu(VIM)
vmGUImenu()所属R语言包:VIM
GUI for Visualization and Imputation of Missing Values
图形用户界面的可视化和插补遗漏值
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Graphical user interface for visualization and imputation of missing values.
图形用户界面的可视化和插补缺失值。
用法----------Usage----------
vmGUImenu()
Details
详细信息----------Details----------
The Data menu allows to select a data set from the R workspace or load data into the workspace from RData files. Furthermore, it can be used to transform variables, which are then appended to the data set in use. Commonly used transformations in official statistics are available, e.g., the Box-Cox transformation and the log-transformation as an important special case of the Box-Cox transformation. In addition, several other transformations that are frequently used for compositional data are implemented. Background maps and coordinates for spatial data can be selected in the data menu as well.
“数据”菜单中,可以选择一个从R工作区或加载数据的数据RData文件到工作区。此外,它可以被用于变换变量,然后将其追加到在使用中的数据集。在官方统计中常用的转换,例如,Box-Cox转换和改造作为一个重要的特殊情况下,Box-Cox转换的log。此外,其他几个是经常使用的成分数据的转换来实现。背景图和坐标空间数据在数据菜单,可以选择为好。
After a data set was chosen, variables can be selected in the main menu, along with a method for scaling. An important feature is that the variables will be used in the same order as they were selected, which is especially useful for parallel coordinate plots. Variables for highlighting are distinguished from the plot variables and can be selected separately. For more than one variable chosen for highlighting, it is possible to select whether observations with missing values in any or in all of these variables should be highlighted.
选择一个数据集之后,变量可以选择主菜单中的,随着用于缩放的方法。一个重要特征是,变量将被使用以相同的顺序,因为他们被选中,这是特别有用的平行坐标图。区别于图变量用于高亮显示的变量,可以单独选择。对于一个以上的用于高亮显示选择的变量,它是可能的,以选择是否在任一或所有这些变量具有缺失值的观测应当被增亮。
A plot method can be selected from the Visualization menu. Note that plots that are not applicable to the selected variables are disabled, for example, if only one plot variable is selected, multivariate plots cannot be chosen.
可视化菜单,可以选择一个图法。注意,并不适用于所选变量的图被禁用,例如,如果只有一个图变量选择,多元图不能选择。
The Imputation menu offers robust imputation methods to impute variables of the data set.
的归责菜单提供了强大的估算方法,,推诿变量的数据集。
The Diagnostics menu is similar to the Visualization menu, but is designed to verify the results after the imputation of missing values.
诊断菜单是类似的可视化菜单,但设计的插补缺失值的验证后的结果。
Last, but not least, the Options menu allows to set the colors, alpha channel and the delimiter for imputed variables to be used in the plots. In addition, it contains an option to embed multivariate plots in Tcl/Tk windows. This is useful if the number of observations and/or variables is large, because scrollbars allow to move from one part of the plot to another.
最后,但并非最不重要的一点是,“选项”菜单中可以设置颜色,alpha通道和估算的田块要使用的变量的分隔符。此外,它包含一个选项,嵌入多元图Tcl/Tk窗口。这是非常有用的意见和/或变量的数量非常大,因为滚动条允许的图从一个移动到另一个。
The section Imputation is not yet implemented.
本节插补尚未实现。
(作者)----------Author(s)----------
Andreas Alfons, based on an initial design by Matthias Templ,
modifications by Bernd Prantner
参考文献----------References----------
Exploring incomplete data using visualization tools. Journal of Advances in Data Analysis and Classification, Online first. DOI: 10.1007/s11634-011-0102-y.
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|