找回密码
 注册
查看: 290|回复: 0

R语言 VGAM包 expexp1()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 15:33:15 | 显示全部楼层 |阅读模式
expexp1(VGAM)
expexp1()所属R语言包:VGAM

                                         Exponentiated Exponential Distribution
                                         幂指数分布

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Estimates the two parameters of the exponentiated exponential distribution by maximizing a profile (concentrated) likelihood.
估计这两个参数的幂指数分布,最大化配置文件(浓缩型)的可能性。


用法----------Usage----------


expexp1(lscale = "loge", escale = list(), iscale = NULL, ishape = 1)



参数----------Arguments----------

参数:lscale
Parameter link function for the (positive) scale parameter. See Links for more choices.  
的(正)scale参数参数链接功能。见Links更多的选择。


参数:escale
List. Extra argument for the link. See earg in Links for general information.  
列表。额外的参数的链接。见earg中Links的一般信息。


参数:iscale
Initial value for the scale parameter. By default, an initial value is chosen internally using ishape.  
的初始值scale参数。默认情况下,初始值是内部选择使用ishape。


参数:ishape
Initial value for the shape parameter. If convergence fails try setting a different value for this argument.  
的初始值shape参数。如果收敛失败的话请尝试把此参数设置不同的值。


Details

详细信息----------Details----------

See expexp for details about the exponentiated exponential distribution. This family function uses a different algorithm for fitting the model. Given scale, the MLE of shape can easily be solved in terms of scale. This family function maximizes a profile (concentrated) likelihood with respect to scale. Newton-Raphson is used, which compares with Fisher scoring with expexp.
见expexp的幂指数分布的详细信息。这间家庭功能使用不同的算法拟合模型。鉴于scale,MLEshape可以很容易地得到解决在scale方面。这间家庭功能最大化的配置文件(浓缩)的可能性就到scale。牛顿 - 拉夫逊,与费舍尔得分expexp。


值----------Value----------

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm and vgam.
类的一个对象"vglmff"(见vglmff-class)。该对象被用于建模功能如vglm和vgam。


警告----------Warning ----------

The standard errors produced by a summary of the model may be wrong.
一个summary的模型所产生的标准误差可能是错误的。


注意----------Note----------

This family function works only for intercept-only models, i.e., y ~ 1 where y is the response.
这的家庭功能仅适用于仅截距模型,即,y ~ 1y是响应。

The estimate of  shape is attached to the misc slot of the object, which is a list and contains the component shape.
估计shape安装的misc插槽的对象,这是一个列表,并包含该组件shape。

As Newton-Raphson is used, the working weights are sometimes negative, and some adjustment is made to these to make them positive.
正如使用Newton-Raphson法,工作的权重是有时是消极的,和一些调整这些并使它们积极。

Like expexp, good initial values are needed. Convergence may be slow.
类似expexp,良好的初始值是必要的。收敛速度可能很慢。


(作者)----------Author(s)----------


T. W. Yee



参考文献----------References----------

Exponentiated exponential family: an alternative to gamma and Weibull distributions, Biometrical Journal, 43, 117–130.

参见----------See Also----------

expexp, CommonVGAMffArguments.
expexp,CommonVGAMffArguments。


实例----------Examples----------


# Ball bearings data (number of million revolutions before failure)[球轴承数据(故障前的万转数)]
bbearings = data.frame(y = c(17.88, 28.92, 33.00, 41.52, 42.12, 45.60,
48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64,
68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92,
128.04, 173.40))
fit = vglm(y ~ 1, expexp1(ishape = 4), bbearings, trace = TRUE,
           maxit = 50, checkwz = FALSE)
coef(fit, matrix = TRUE)
Coef(fit) # Authors get c(0.0314, 5.2589) with log-lik -112.9763[得到C(0.0314,5.2589),数力-112.9763]
fit@misc$shape    # Estimate of shape[估计形状]
logLik(fit)


# Failure times of the airconditioning system of an airplane[飞机上的空调系统的故障时间]
acplane = data.frame(y = c(23, 261, 87, 7, 120, 14, 62, 47,
225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14,
71, 11, 14, 11, 16, 90, 1, 16, 52, 95))
fit = vglm(y ~ 1, expexp1(ishape = 0.8), acplane, trace = TRUE,
           maxit = 50, checkwz = FALSE)
coef(fit, matrix = TRUE)
Coef(fit) # Authors get c(0.0145, 0.8130) with log-lik -152.264[得到C(0.0145,0.8130),数力-152.264]
fit@misc$shape    # Estimate of shape[估计形状]
logLik(fit)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-26 18:50 , Processed in 0.046388 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表