找回密码
 注册
查看: 399|回复: 0

R语言 VGAM包 dhuber()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 15:32:10 | 显示全部楼层 |阅读模式
dhuber(VGAM)
dhuber()所属R语言包:VGAM

                                        Huber's least favourable distribution
                                         Huber的最有利的分布

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Density, distribution function, quantile function and random generation for Huber's least favourable distribution, see Huber and Ronchetti (2009).
密度,分布函数,Huber的最不利分布的分位数函数随机生成,看到胡贝尔和龙凯蒂(2009年)。


用法----------Usage----------


  dhuber(x, k = 0.862, mu = 0, sigma = 1, log = FALSE)
edhuber(x, k = 0.862, mu = 0, sigma = 1, log = FALSE)
  rhuber(n, k = 0.862, mu = 0, sigma = 1)
  qhuber(p, k = 0.862, mu = 0, sigma = 1)
  phuber(q, k = 0.862, mu = 0, sigma = 1)




参数----------Arguments----------

参数:x, q
numeric vector, vector of quantiles.
数字向量,向量的位数。


参数:p
vector of probabilities.
向量的概率。


参数:n
number of random values to be generated. If length(n) > 1 then the length is taken to be the number required.  
要生成的随机值的数量。如果length(n) > 1的长度是所需的数量。


参数:k
numeric. Borderline value of central Gaussian part of the distribution. This is known as the tuning constant, and should be positive. For example, k = 0.862 refers to a 20% contamination neighborhood of the Gaussian distribution. If k = 1.40 then this is 5% contamination.  
数字。中央高斯分布的边缘值。这是被称为调谐常数,和应为正值。例如,k = 0.862是指20%的污染附近的高斯分布。如果k = 1.40然后是5%的污染。


参数:mu
numeric. distribution mean.
数字。分布的意思。


参数:sigma
numeric. Distribution scale (sigma = 1 defines the distribution in standard form, with standard Gaussian centre).
数字。分布规模(sigma = 1定义标准形式的分布,与标准高斯中心)。


参数:log
Logical. If log = TRUE then the logarithm of the result is returned.  
逻辑。如果log = TRUE然后返回的结果是对数。


Details

详细信息----------Details----------

Details are given in huber, the VGAM family function for estimating the parameters mu and sigma.
有关详情载于huber,VGAM家庭功能的参数估计的mu和sigma。


值----------Value----------

dhuber gives out a vector of density values.
dhuber给出的密度值的矢量。

edhuber gives out a list with components val (density values) and eps (contamination proportion).
edhuber给出了一个列表,组件val(密度值)和eps(污染比例)。

rhuber gives out a vector of random numbers generated by Huber's least favourable distribution.
rhuber给出了由Huber的至少有利的分布产生的随机数的矢量。

phuber gives the distribution function, qhuber gives the quantile function.
phuber给出了分布函数,qhuber给分位数的功能。


(作者)----------Author(s)----------



Christian Hennig wrote <code>[d,ed,r]huber()</code>
(from <span class="pkg">smoothmest</span>) and
slight modifications were made by T. W. Yee to
replace looping by vectorization and addition of the <code>log</code> argument.
Arash Ardalan wrote <code>[pq]huber()</code>.
This helpfile was adapted from <span class="pkg">smoothmest</span>.




参见----------See Also----------

huber.
huber。


实例----------Examples----------


set.seed(123456)
edhuber(1:5, k = 1.5)
rhuber(5)

# Plot cdf and pdf[图cdf和pdf]
## Not run:  mu = 3; xx = seq(-2, 7, len = 100)[#不运行:MU = 3; XX = SEQ(-2,7,LEN = 100)]
plot(xx, dhuber(xx, mu = mu), type = "l", col = "blue", las = 1, ylab = "",
     main = "blue is density, red is cumulative distribution function",
     sub = "Purple lines are the 10,20,...,90 percentiles",
     ylim = 0:1)
abline(h = 0, col = "blue", lty = 2)
lines(xx, phuber(xx, mu = mu), type = "l", col = "red")
probs = seq(0.1, 0.9, by = 0.1)
Q = qhuber(probs, mu = mu)
lines(Q, dhuber(Q, mu = mu), col = "purple", lty = 3, type = "h")
lines(Q, phuber(Q, mu = mu), col = "purple", lty = 3, type = "h")
abline(h = probs, col = "purple", lty = 3)
phuber(Q, mu = mu) - probs    # Should be all zero[应该是所有零]

## End(Not run) [#(不执行)]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-26 18:32 , Processed in 0.026295 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表