dcennormal1(VGAM)
dcennormal1()所属R语言包:VGAM
Univariate Normal Distribution with Double Censoring
双截尾单变量正态分布
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Maximum likelihood estimation of the two parameters of a univariate normal distribution when there is double censoring.
单变量正态分布的两个参数的最大似然估计的时有双重审查。
用法----------Usage----------
dcennormal1(r1 = 0, r2 = 0, lmu = "identity", lsd = "loge",
emu = list(), esd = list(),
imu = NULL, isd = NULL, zero = 2)
参数----------Arguments----------
参数:r1, r2
Integers. Number of smallest and largest values censored, respectively.
整数。数的最小值和最大值分别审查,。
参数:lmu, lsd, emu, esd
Parameter link functions and its extra arguments applied to the mean and standard deviation. See Links for more choices.
参数链接的功能和额外的参数的均值和标准差。见Links更多的选择。
参数:imu, isd, zero
See CommonVGAMffArguments for more information.
见CommonVGAMffArguments更多信息。
Details
详细信息----------Details----------
This family function uses the Fisher information matrix given in Harter and Moore (1966). The matrix is not diagonal if either r1 or r2 are positive.
这间家庭功能使用的Fisher信息矩阵在哈特和Moore(1966)给出。矩阵不是对角,如果是r1或r2是积极的。
By default, the mean is the first linear/additive predictor and the log of the standard deviation is the second linear/additive predictor.
默认情况下,平均是第一个线性/添加剂预测和log的标准差是第二个线性/添加剂预测。
值----------Value----------
An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm, and vgam.
类的一个对象"vglmff"(见vglmff-class)。该对象被用于建模功能,如vglm,vgam。
注意----------Note----------
This family function only handles a vector or one-column matrix response. The weights argument, if used, are interpreted as frequencies, therefore it must be a vector with positive integer values.
这间家庭功能只处理一个向量或一列的矩阵响应。 weights参数,如果使用的话,将被解释为频率,因此它必须是正整数的值的矢量。
With no censoring at all (the default), it is better (and equivalent) to use normal1.
使用没有审查(默认值),它是更好的(当量)使用normal1。
(作者)----------Author(s)----------
T. W. Yee
参考文献----------References----------
Iterative maximum-likelihood estimation of the parameters of normal populations from singly and doubly censored samples. Biometrika, 53, 205–213.
参见----------See Also----------
normal1, cennormal1, tobit.
normal1,cennormal1,tobit。
实例----------Examples----------
SIMS = 100 # Number of simulations (change this to 1000)[模拟(改变此为1000)]
mu.save = sd.save = rep(NA, len = SIMS)
r1 = 0; r2 = 4; nn = 20
for(sim in 1:SIMS) {
y = sort(rnorm(nn))
y = y[(1+r1)nn-r2)] # Delete r1 smallest and r2 largest[删除R1最小和最大的R2]
fit = vglm(y ~ 1, dcennormal1(r1 = r1, r2 = r2))
mu.save[sim] = predict(fit)[1,1]
sd.save[sim] = exp(predict(fit)[1,2]) # Assumes a log link and ~ 1[假设log链接和~1]
}
c(mean(mu.save), mean(sd.save)) # Should be c(0,1)[应该是C(0,1)]
c(sd(mu.save), sd(sd.save))
## End(Not run)[#(不执行)]
# Data from Sarhan and Greenberg (1962); MLEs are mu = 9.2606, sd = 1.3754[Sarhan和格林伯格(1962);最大似然估计的数据是亩= 9.2606,SD = 1.3754]
strontium90 = data.frame(y = c(8.2, 8.4, 9.1, 9.8, 9.9))
fit = vglm(y ~ 1, dcennormal1(r1 = 2, r2 = 3, isd = 6), strontium90, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|