postsegnormalize(CGHcall)
postsegnormalize()所属R语言包:CGHcall
Post-segmentation normalization
后分割标准化
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function normalizes arrayCGH data after segmentation in order to find a better 0-level.
此功能标准化arrayCGH分割后的数据,以便找到一个更好的0级。
用法----------Usage----------
postsegnormalize(segmentData, inter=c(-0.1,0.1))
参数----------Arguments----------
参数:segmentData
Object of class cghSeg.
对象类cghSeg。
参数:inter
Interval in which the function should search for the normal level.
间隔在该函数的正常水平应该寻找。
Details
详情----------Details----------
This function recursively searches for the interval containing the most segmented data, decreasing the interval length in each recursion. The recursive search makes the post-segmentation normalization robust against local maxima. This function is particularly useful for profiles for which, after segmentation, the 0-level does not coincide with many segments. It is more or less harmless to other profiles. We advise to keep the search interval (inter) small, in particular at the positive (gain) side to avoid that the 0-level is set to a common gain level.
这个函数递归搜索间隔最分段的数据,在每个递归下降区间长度。递归搜索,使得分割后的标准化,对局部最大值强劲。此功能是特别有用的配置,分割后,0级不配合许多领域。这是或多或少无害的其他配置。我们建议,以保持搜索的时间间隔(间)小,避免0级设置为一个共同的增益水平,特别是在积极的(收益)侧。
值----------Value----------
This function returns a cghSeg object in the same format as the input with post-segmentation-normalized adjusted log2 ratios and segmented values.
这个函数返回与输入分割后的规范化调整的log2比率和分段值在相同的格式cghSeg对象。
作者(S)----------Author(s)----------
Mark van de Wiel
举例----------Examples----------
data(Wilting)
## Convert to \code{\link{cghRaw}} object[#转换为\代码{\链接{cghRaw}的}对象]
cgh <- make_cghRaw(Wilting)
## First preprocess the data[#首先进行预处理数据]
raw.data <- preprocess(cgh)
## Simple global median normalization for samples with 75% tumor cells[#简单的全球75%的肿瘤单元样本中位数标准化]
perc.tumor <- rep(0.75, 3)
normalized.data <- normalize(raw.data, cellularity=perc.tumor)
## Segmentation with slightly relaxed significance level to accept change-points.[#分割稍微宽松的显着性水平,接受变化点。]
## Note that segmentation can take a long time.[#注意,分割可以采取很长一段时间。]
## Not run: segmented.data <- segmentData(normalized.data, alpha=0.02)[#无法运行:segmented.data < - segmentData(normalized.data,α= 0.02)]
## Not run: postsegnormalized.data <- postsegnormalize(segmented.data, inter=c(-0.1,0.1))[#无法运行:postsegnormalized.data < - postsegnormalize(segmented.data,除= C(-0.1,0.1))]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|