找回密码
 注册
查看: 339|回复: 0

R语言 VGAM包 beta.ab()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 15:25:38 | 显示全部楼层 |阅读模式
beta.ab(VGAM)
beta.ab()所属R语言包:VGAM

                                         The Two-parameter Beta Distribution Family Function
                                         两个参数的Beta分布的家庭功能

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Estimation of the shape parameters of the two-parameter beta distribution.
两个参数的beta分布的形状参数的估计。


用法----------Usage----------


beta.ab(lshape1 = "loge", lshape2 = "loge",
        eshape1 = list(), eshape2 = list(),
        i1 = NULL, i2 = NULL, trim = 0.05,
        A = 0, B = 1, parallel = FALSE, zero = NULL)



参数----------Arguments----------

参数:lshape1, lshape2
Parameter link functions applied to the two shape parameters.  See Links for more choices. The log link (defaults) ensures that the parameters are positive.  
参数链接功能施加到两个形状参数。见Links更多的选择。log链接(默认值)的参数是积极的。


参数:eshape1, eshape2
List. Extra argument for the links. See earg in Links for general information.  
列表。额外的参数的链接。见earg中Links的一般信息。


参数:i1, i2
Initial value for the first and second shape parameters respectively. A NULL value means it is obtained in the initialize slot.  
在第一和第二形状参数分别初始值。 ANULL这个值意味着它获得initialize插槽。


参数:trim
An argument which is fed into mean(); it is the fraction (0 to 0.5) of observations to be trimmed from each end of the response y before the mean is computed. This is used when computing initial values, and guards against outliers.  
一个参数,该参数被送入mean();它是从每端的响应要修剪的分数(0至0.5)的观测y前的平均值计算。这是用来计算初始值,防离群。


参数:A, B
Lower and upper limits of the distribution. The defaults correspond to the standard beta distribution where the response lies between 0 and 1.  
的上限和下限的分布。默认值对应的标准beta分布的响应是0和1之间。


参数:parallel, zero
See CommonVGAMffArguments for more information.  
见CommonVGAMffArguments更多信息。


Details

详细信息----------Details----------

The two-parameter beta distribution is given by f(y) =
这两个参数的beta分布由f(y) =

for A < y < B, and Beta(.,.) is the beta function (see beta). The shape parameters are positive, and here, the limits A and B are known. The mean of Y is E(Y) = A + (B-A) * shape1 /   (shape1 + shape2), and these are the fitted values of the object.
A < y < B和Beta(.,.)是β函数(见beta)。的形状参数是正的,并且在这里,限制A和B是已知的。 Y的平均E(Y) = A + (B-A) * shape1 /   (shape1 + shape2),而这些都是拟合值的对象。

For the standard beta distribution the variance of Y is         shape1 * shape2 / ((1+shape1+shape2) * (shape1+shape2)^2). If &sigma;^2= 1 / (1+shape1+shape2) then the variance of Y can be written mu*(1-mu)*sigma^2 where mu=shape1 / (shape1 + shape2) is the mean of Y.
对于标准beta分布的方差Y是        shape1 * shape2 / ((1+shape1+shape2) * (shape1+shape2)^2)。如果&sigma;^2= 1 / (1+shape1+shape2)那么的方差Y可以书面mu*(1-mu)*sigma^2其中mu=shape1 / (shape1 + shape2)的平均Y。

Another parameterization of the beta distribution involving the mean and a precision parameter is implemented in betaff.
另一种参数化的β分布的均值和精度参数的实施betaff。

If A and B are unknown, then the VGAM family function beta4() can be used to estimate these too.
如果A和B是未知的,然后VGAM家庭功能beta4()可以用来估计这些。


值----------Value----------

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm, rrvglm and vgam.
类的一个对象"vglmff"(见vglmff-class)。该对象被用于建模功能,如vglm,rrvglm和vgam。


注意----------Note----------

The response must have values in the interval (A, B). VGAM 0.7-4 and prior called this function betaff.
的反应必须有值的时间间隔(A,B)。 VGAM0.7-4和之前调用此函数betaff。


(作者)----------Author(s)----------


Thomas W. Yee



参考文献----------References----------

Chapter 25 of:  Continuous Univariate Distributions, 2nd edition, Volume 2, New York: Wiley.
Handbook of Beta Distribution and Its Applications, New York: Marcel Dekker.
http://www.stat.auckland.ac.nz/~yee contains further information and examples.

参见----------See Also----------

betaff, Beta, genbetaII, betaII, betabinomial.ab, betageometric, betaprime, rbetageom, rbetanorm, kumar, beta4.
betaff,Beta,genbetaII,betaII,betabinomial.ab,betageometric,betaprime,rbetageom,rbetanorm,kumar,beta4。


实例----------Examples----------


bdata = data.frame(y = rbeta(n = 1000, shape1 = exp(0), shape2 = exp(1)))
fit = vglm(y ~ 1, beta.ab(lshape1 = "identity", lshape2 = "identity"),
           data = bdata, trace = TRUE, crit = "coef")
fit = vglm(y ~ 1, beta.ab, bdata, trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit)  # Useful for intercept-only models[仅截距模型]

bdata = transform(bdata, Y = 5 + 8 * y)   # From 5 to 13, not 0 to 1[从5到13,而不是0到1的]
fit = vglm(Y ~ 1, beta.ab(A = 5, B = 13), bdata, trace = TRUE)
Coef(fit)
c(meanY = with(bdata, mean(Y)), head(fitted(fit),2))

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-26 21:23 , Processed in 0.020767 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表