beta.ab(VGAM)
beta.ab()所属R语言包:VGAM
The Two-parameter Beta Distribution Family Function
两个参数的Beta分布的家庭功能
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Estimation of the shape parameters of the two-parameter beta distribution.
两个参数的beta分布的形状参数的估计。
用法----------Usage----------
beta.ab(lshape1 = "loge", lshape2 = "loge",
eshape1 = list(), eshape2 = list(),
i1 = NULL, i2 = NULL, trim = 0.05,
A = 0, B = 1, parallel = FALSE, zero = NULL)
参数----------Arguments----------
参数:lshape1, lshape2
Parameter link functions applied to the two shape parameters. See Links for more choices. The log link (defaults) ensures that the parameters are positive.
参数链接功能施加到两个形状参数。见Links更多的选择。log链接(默认值)的参数是积极的。
参数:eshape1, eshape2
List. Extra argument for the links. See earg in Links for general information.
列表。额外的参数的链接。见earg中Links的一般信息。
参数:i1, i2
Initial value for the first and second shape parameters respectively. A NULL value means it is obtained in the initialize slot.
在第一和第二形状参数分别初始值。 ANULL这个值意味着它获得initialize插槽。
参数:trim
An argument which is fed into mean(); it is the fraction (0 to 0.5) of observations to be trimmed from each end of the response y before the mean is computed. This is used when computing initial values, and guards against outliers.
一个参数,该参数被送入mean();它是从每端的响应要修剪的分数(0至0.5)的观测y前的平均值计算。这是用来计算初始值,防离群。
参数:A, B
Lower and upper limits of the distribution. The defaults correspond to the standard beta distribution where the response lies between 0 and 1.
的上限和下限的分布。默认值对应的标准beta分布的响应是0和1之间。
参数:parallel, zero
See CommonVGAMffArguments for more information.
见CommonVGAMffArguments更多信息。
Details
详细信息----------Details----------
The two-parameter beta distribution is given by f(y) =
这两个参数的beta分布由f(y) =
for A < y < B, and Beta(.,.) is the beta function (see beta). The shape parameters are positive, and here, the limits A and B are known. The mean of Y is E(Y) = A + (B-A) * shape1 / (shape1 + shape2), and these are the fitted values of the object.
A < y < B和Beta(.,.)是β函数(见beta)。的形状参数是正的,并且在这里,限制A和B是已知的。 Y的平均E(Y) = A + (B-A) * shape1 / (shape1 + shape2),而这些都是拟合值的对象。
For the standard beta distribution the variance of Y is shape1 * shape2 / ((1+shape1+shape2) * (shape1+shape2)^2). If σ^2= 1 / (1+shape1+shape2) then the variance of Y can be written mu*(1-mu)*sigma^2 where mu=shape1 / (shape1 + shape2) is the mean of Y.
对于标准beta分布的方差Y是 shape1 * shape2 / ((1+shape1+shape2) * (shape1+shape2)^2)。如果σ^2= 1 / (1+shape1+shape2)那么的方差Y可以书面mu*(1-mu)*sigma^2其中mu=shape1 / (shape1 + shape2)的平均Y。
Another parameterization of the beta distribution involving the mean and a precision parameter is implemented in betaff.
另一种参数化的β分布的均值和精度参数的实施betaff。
If A and B are unknown, then the VGAM family function beta4() can be used to estimate these too.
如果A和B是未知的,然后VGAM家庭功能beta4()可以用来估计这些。
值----------Value----------
An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm, rrvglm and vgam.
类的一个对象"vglmff"(见vglmff-class)。该对象被用于建模功能,如vglm,rrvglm和vgam。
注意----------Note----------
The response must have values in the interval (A, B). VGAM 0.7-4 and prior called this function betaff.
的反应必须有值的时间间隔(A,B)。 VGAM0.7-4和之前调用此函数betaff。
(作者)----------Author(s)----------
Thomas W. Yee
参考文献----------References----------
Chapter 25 of: Continuous Univariate Distributions, 2nd edition, Volume 2, New York: Wiley.
Handbook of Beta Distribution and Its Applications, New York: Marcel Dekker.
http://www.stat.auckland.ac.nz/~yee contains further information and examples.
参见----------See Also----------
betaff, Beta, genbetaII, betaII, betabinomial.ab, betageometric, betaprime, rbetageom, rbetanorm, kumar, beta4.
betaff,Beta,genbetaII,betaII,betabinomial.ab,betageometric,betaprime,rbetageom,rbetanorm,kumar,beta4。
实例----------Examples----------
bdata = data.frame(y = rbeta(n = 1000, shape1 = exp(0), shape2 = exp(1)))
fit = vglm(y ~ 1, beta.ab(lshape1 = "identity", lshape2 = "identity"),
data = bdata, trace = TRUE, crit = "coef")
fit = vglm(y ~ 1, beta.ab, bdata, trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit) # Useful for intercept-only models[仅截距模型]
bdata = transform(bdata, Y = 5 + 8 * y) # From 5 to 13, not 0 to 1[从5到13,而不是0到1的]
fit = vglm(Y ~ 1, beta.ab(A = 5, B = 13), bdata, trace = TRUE)
Coef(fit)
c(meanY = with(bdata, mean(Y)), head(fitted(fit),2))
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|