找回密码
 注册
查看: 497|回复: 0

R语言 CellNOptR包 writeNetwork()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-25 14:26:53 | 显示全部楼层 |阅读模式
writeNetwork(CellNOptR)
writeNetwork()所属R语言包:CellNOptR

                                         Write a previous knowledge network model to a sif file (with attribute files), as well as a dot file
                                         写一个sif文件以前的知识网络模型(属性文件),以及一个点文件

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This function writes the original previous knowledge network (the model that you loaded in the beginning of your analysis)  in a sif file, with a nodes attribute file that specifies if each node was stimulated/inhibited/signal/compressed/non-controllable-non-observable and an edge attribute file that specifies if the edge was absent in the optimal model (0) present in the optimal model at t1 (1) or present in the optimal model at t2 (2).
这个函数写在sif文件原来以前的知识网络(你在你的分析开始加载模型)与节点的属性文件,指定如果每个节点刺激/抑制/信号/压缩/非可控非观察和边缘属性文件指定的边缘,如果目前在优化模型(1)在T1或T2(2)优化模型中的最优模型(0)缺席。

This function also writes a Graphviz dot file that contains the same information (see writeDot for more information about the dot file conventions).
此功能还写了Graphviz的dot文件包含相同的信息(见writeDot点文件约定的有关信息)。


用法----------Usage----------


writeNetwork(ModelOriginal, ModelComprExpanded, optimResT1, optimResT2, CNOlist)



参数----------Arguments----------

参数:ModelOriginal
The PKN model  
PKN模型


参数:ModelComprExpanded
The scaffold model (i.e. compressed and expanded)  
支架模型(即压缩和扩展)


参数:optimResT1
The results of the optimisation process at t1  
在t1的优化过程的结果


参数:optimResT2
The results of the optimisation process at t2 (set this to NA, the t2 optimisation is not implemented in this version).  
在T2的优化过程的结果(设置为NA,T2优化没有实现在这个版本)。


参数:CNOlist
The CNOlist on which the optimisation is based  
优化基于CNOlist的


Details

详情----------Details----------

The weights of the edges are computed as the mean across models within the relative tolerance limits, as output in the results from the optimisation $StringsTol. Strings that are in $StringsTol are the ones that are within the relative tolerance limits around the best solution in the population across all generations of the optimisation.
边的权重,计算平均跨模型的相对容忍限度内,输出作为优化$StringsTol的结果。 $StringsTol字符串是那些围绕在人群中的最佳解决跨代优化所有的相对容忍限度之内。

!If there is no time 2, then the argument optimResT2 should be = NA
如果没有时间,那么参数optimResT2应该是=不适用

This function maps back the edges weights from the optimised (expanded and compressed) model to the original model. The mapping back only works if the path has length 2 at most (i.e. you have node1-comp1-comp2-node2, where comp refer to nodes that have been compressed).
此功能的图边缘的重量从优化模型(扩大和压缩)的原始模型。如果路径长度最多2(即你有node1上的COMP1,COMP2 node2上,排版是指已压缩节点)映射回。


值----------Value----------

This function does not have any output, it just writes a sif file, an edge attribute file, and a node attribute file
此功能不会有任何输出,它只是写sif文件,边缘属性文件,一个节点的属性文件


注意----------Note----------

The mapback of this function is still an open question, even in the Matlab version.  Future developments will include more robust versions of the mapping back algorithm, probably as a separate mapback function.
此功能mapback仍然是一个悬而未决的问题,甚至在MATLAB版本。未来的发展将包括映射回算法,,大概单独mapback功能,更强大的版本。


作者(S)----------Author(s)----------



C. Terfve




参见----------See Also----------

writeScaffold, writeDot
writeScaffold,writeDot


举例----------Examples----------


tmpdir<-tempdir()
setwd(tmpdir)

#load data[数据加载]

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#pre-process model[预过程模型]

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyNCNOindices<-findNONC(ToyModel,indicesToy,verbose=TRUE)
ToyNCNOcut<-cutNONC(ToyModel,ToyNCNOindices)
indicesToyNCNOcut<-indexFinder(CNOlistToy,ToyNCNOcut)
ToyNCNOcutComp<-compressModel(ToyNCNOcut,indicesToyNCNOcut)
indicesToyNCNOcutComp<-indexFinder(CNOlistToy,ToyNCNOcutComp)
ToyNCNOcutCompExp<-expandGates(ToyNCNOcutComp)

#optimise[优化]

ToyFields4Sim<-prep4Sim(ToyNCNOcutCompExp)
initBstring<-rep(1,length(ToyNCNOcutCompExp$reacID))
ToyT1opt<-gaBinaryT1(
        CNOlist=CNOlistToy,
        Model=ToyNCNOcutCompExp,
        SimList=ToyFields4Sim,
        indexList=indicesToyNCNOcutComp,
        initBstring=initBstring,
        verbose=TRUE,
        maxGens=2,
        PopSize=5)

#write network[写网络]

writeNetwork(
        ModelOriginal=ToyModel,
        ModelComprExpanded=ToyNCNOcutCompExp,
        optimResT1=ToyT1opt,
        optimResT2=NA,
        CNOlist=CNOlistToy)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-27 14:20 , Processed in 0.023154 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表