找回密码
 注册
查看: 622|回复: 0

R语言 CellNOptR包 plotOptimResults()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-25 14:25:41 | 显示全部楼层 |阅读模式
plotOptimResults(CellNOptR)
plotOptimResults()所属R语言包:CellNOptR

                                         Plot the data and simulated values
                                         绘制数据和模拟值

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This function is the equivalent of CNOPlotFits, it plots the data and the simulated values,  along with an image plot that tells which cues were present.  The plots are coloured according to the fit between data and simulated data.
此功能相当于CNOPlotFits,它图的数据和模拟值,随着影像图,告诉哪些线索人出席。图是彩色的,根据数据和模拟数据之间的契合。


用法----------Usage----------


plotOptimResults(SimResults = SimResults, expResults = expResults, times = times, namesCues = namesCues, namesSignals = namesSignals, valueCues = valueCues)



参数----------Arguments----------

参数:SimResults
a list with a field for each time point, each containing a matrix of dimensions (number of conditions) * (number of signals), with the first field being t0.  Typically produced by simulating a model and then extracting the columns that correspond to signals  
为每个时间点的字段列表,每一个维度的矩阵(若干条件)*(数字信号),含首先是T0领域。通常情况下产生的模拟模型,然后提取信号对应的列


参数:expResults
same as above, but contains the experimental results, ie this is CNOlist$valueSignals  
与上述相同,但包含了实验结果,即这是CNOlist$valueSignals的


参数:times
a vector of times, its length should be the same as the number of fields in SimResults and ExpResults  
一个时代的向量,其长度应作为领域在SimResults和ExpResults的数量相同


参数:namesCues
a vector of names, typically CNOlist$namesCues  
一个名字的向量,通常CNOlist$namesCues


参数:namesSignals
a vector of names, typically CNOlist$namesSignals  
一个名字的向量,通常CNOlist$namesSignals


参数:valueCues
a matrix of dimensions (number of conditions) * (number of cues), typically CNOlist$valueCues  
一维的矩阵(条件)*(线索),通常CNOlist$valueCues


Details

详情----------Details----------

The colouring of the background is done as follows: the mean absolute difference between observed and simulated values are computed, and colours are chosen based on this value: red (above 0.9), indianred1 (between O.8 and 0.9), lightpink2 (between 0.7 and 0.8), lightpink (between 0.6 and 0.7), mistyrose (between 0.5 and 0.6), palegoldenrod (between 0.4 and 0.5), palegreen (between 0.3 and 0.4), darkolivegreen3 (between 0.2 and 0.3), chartreuse3 (between 0.1 and 0.2), forestgreen (between 0 and 0.1). This function is used inside cutAndPlotResultsT1.
着色的背景如下:观测和模拟值之间的平均绝对差的计算,并基于此值是选择颜色:红色(0.9以上),indianred1(O.8和0.9之间),lightpink2(之间0.7和0.8),浅粉红(0.6至0.7之间),粉玫瑰红(0.5和0.6之间),淡金黄(0.4和0.5之间),淡绿(0.3和0.4之间),darkolivegreen3(0.2~0.3之间),chartreuse3(0.1至0.2),森林绿(0和0.1之间)。此功能用于内cutAndPlotResultsT1。


值----------Value----------

This function doesn't return anything, it just produces a plot in your graphics window.
此函数不返回任何东西,它只是产生一个图形窗口中的图。


作者(S)----------Author(s)----------



C. Terfve




参考文献----------References----------

mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

参见----------See Also----------

cutAndPlotResultsT1
cutAndPlotResultsT1


举例----------Examples----------


tmpdir<-tempdir()
setwd(tmpdir)

#We will plot the fit of the full initial model compared to the data, without any optimisation[我们将绘制的比较完整的初始数据模型的拟合,没有任何优化]
#This is normally not done on a stand alone basis, but if you have a model and would like to visualise its output compared to your data, then this is what you should do[这通常不是一个独立的基础上进行,但如果你有一个模型,想形象化您的数据相比,其输出,那么这就是你应该做的]

#load and prepare data[加载和准备数据]

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")
indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyFields4Sim<-prep4Sim(ToyModel)

#simulate model[模拟模型]

Sim<-simulatorT1(CNOlist=CNOlistToy,Model=ToyModel,SimList=ToyFields4Sim,indexList=indicesToy)

#format data and results[格式的数据和结果]

SimRes<-Sim[,indicesToy$signals]
SimResults<-list(t0=matrix(data=0,nrow=dim(SimRes)[1],ncol=dim(SimRes)[2]),t1=SimRes)
expResults<-list(t0=CNOlistToy$valueSignals[[1]],t1=CNOlistToy$valueSignals[[2]])

#plot[图]

plotOptimResults(
        SimResults=SimResults,
        expResults=expResults,
        times=CNOlistToy$timeSignals[1:2],
        namesCues=CNOlistToy$namesCues,
        namesSignals=CNOlistToy$namesSignals,
        valueCues=CNOlistToy$valueCues)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-27 13:36 , Processed in 0.020393 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表